UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA CIVIL ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

ESTUDIO DE MEZCLAS DE CONCRETO HIDRÁULICO PERMEABLE PARA PAVIMENTOS RÍGIDOS URBANOS DE LA REGIÓN CUSCO USANDO LA NORMA ACI 522

PRESENTADO POR:

-Br. RUDYARD NICOLAY ARAUJO MAMANI

-Br. JHERSSON VALENTIN SULLCA BACA

PARA OPTAR AL TITULO PROFESIONAL DE INGENIERO CIVIL

ASESOR:

Ing. JOSÉ FELIPE AZPILCUETA CARBONELL

CUSCO – PERÚ 2024

INFORME DE ORIGINALIDAD

(Aprobado por Resolución Nro.CU-303-2020-UNSAAC)

El que suscribe, **Asesor** del trabajo de investigación/tesis titulada: ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO PERMEABLE PARA PAVIMENTOS RÍGIDOS URBANOS DE LA REGIÓN CUSCO USANDO LA NORMA ACI 522

presentado por: RUDYARD NICOLAY ARAUJO MAMANI con DNI Nro.: 71429077 presentado por: JHERSSON VALENTIN SULLCA BACA con DNI Nro.: 73209721 para optar el título profesional/grado académico de INGENIERO CIVIL.

Informo que el trabajo de investigación ha sido sometido a revisión por 02 veces, mediante el Software Anti plagio, conforme al Art. 6° del *Reglamento para Uso de Sistema Anti plagio de la UNSAAC* y de la evaluación de originalidad se tiene un porcentaje de 8%.

Evaluación y acciones del reporte de coincidencia para trabajos de investigación conducentes a grado académico o título profesional, tesis

Porcentaje	Evaluación y Acciones	Marque con una (X)
Del 1 al 10%	No se considera plagio.	X
Del 11 al 30 %	Devolver al usuario para las correcciones.	
Mayor a 31%	El responsable de la revisión del documento emite un informe al inmediato jerárquico, quien a su vez eleva el informe a la autoridad académica para que tome las acciones correspondientes. Sin perjuicio de las sanciones administrativas que correspondan de acuerdo a Ley.	129

Por tanto, en mi condición de asesor, firmo el presente informe en señal de conformidad y **adjunto** la primera página del reporte del Sistema Anti plagio.

Cusco, 06 de setiembre de 2024

Firma

Post firma: Ing. José Felipe Azpilcueta Carbonell

Nro. de DNI: 23881345

ORCID del Asesor 0000-0003-3954-4737

Se adjunta:

- 1. Reporte generado por el Sistema Anti plagio.
- Enlace del Reporte Generado por el Sistema Anti plagio: oíd: 27259:378913478
 https://unsaac.turnitin.com/viewer/submissions/oid:27259:378913478?locale=es-MX

NOMBRE DEL TRABAJO

AUTOR

ESTUDIO DE MEZCLAS DE CONCRETO HI DRAULICO PERMEABLE PARA PAVIMEN TOS RIGIDOS URBANOS DE LA REGION C US

RUDYARD - JHERSSON ARAUJO - SULLC

RECUENTO DE PALABRAS

33864 Words

RECUENTO DE PÁGINAS

171 Pages

FECHA DE ENTREGA

Sep 6, 2024 5:46 PM GMT-5

RECUENTO DE CARACTERES

185485 Characters

TAMAÑO DEL ARCHIVO

8.8MB

FECHA DEL INFORME

Sep 6, 2024 5:48 PM GMT-5

8% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- · 6% Base de datos de Internet
- · Base de datos de Crossref

- · 0% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref
- 6% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

- Material bibliográfico
- Material citado

- · Material citado
- Coincidencia baja (menos de 13 palabras)

Dedicatoria

A mi madre, por acompañarme, apoyarme y creer en mí, aun cuando ni yo mismo creía, a mi familia por estar a mi lado, porque si solo uno de ellos faltara, no lo habría logrado. Este trabajo es de ustedes, gracias por el apoyo desinteresado, y muchas veces mal pagado. Para ustedes con toda mi gratitud.

Rudyard Nicolay Araujo Mamani

A mi familia, por su apoyo constante y por enseñarme el valor del esfuerzo y la perseverancia. Gracias por creer en mí en cada paso de este camino y por ser mi mayor fuente de inspiración.

Esta tesis es un reflejo del cariño y respaldo que me han brindado.

A ustedes, con todo mi amor y gratitud.

Jhersson Valentin Sullca Baca

Agradecimientos

En principio queremos agradecer a Dios, que siempre estuvo presente durante nuestra investigación, a nuestras familias que nos apoyaron incondicionalmente

También queremos expresar nuestro más sincero agradecimiento al Ingeniero Jorge Iván Cruz Tello, quien en un inicio fue nuestro docente asesor, su guía, conocimientos y dedicación fueron fundamentales en las primeras etapas de esta investigación. Aunque no pudo continuar acompañándonos hasta el final, su influencia y enseñanza han sido clave en este trabajo.

Agradecemos también al Ingeniero José Felipe Azpilcueta Carbonell, quien asumió el rol de asesor, y que nos guio en la etapa final de esta investigación. Su apoyo y orientación fueron esenciales para el desarrollo y culminación de esta tesis. Su compromiso y experiencia nos permitieron superar los retos que se presentaron a lo largo del camino.

Y un agradecimiento especial al Ingeniero Américo Montañez Tupayachi, que fue nuestro revisor, nos guío y alentó a seguir con esta investigación.

Extendemos nuestro agradecimiento a la Universidad Nacional de San Antonio Abad del Cusco, por brindarnos el ambiente académico necesario para alcanzar este logro. A nuestros compañeros de universidad, gracias por su camaradería, apoyo y por ser parte de esta experiencia académica tan enriquecedora.

A todos ustedes, nuestra gratitud y reconocimiento por ser parte de este importante capítulo en nuestras vidas.

Índice

	Índice	6
	Índice de tablas	10
	Índice de figuras	12
	Resumen	13
	Abstract	14
	Introducción	15
	Justificación	16
INVES	CAPÍTULO I: PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	
	1.1. Planteamiento del problema de investigación	17
	1.2. Formulación del problema de investigación	17
	1.2.1 Problema General	17
	1.2.2 Problemas Específicos	17
	1.3. Objetivos de la investigación	18
	1.3.1 Objetivo General	18
	1.3.2 Objetivos específicos	18
	CAPÍTULO II: MARCO TEÓRICO Y CONCEPTUAL	19
	2.1. Antecedentes y estado del arte	19
	2.1.1. Antecedentes a nivel nacional	19
	2.1.2. Antecedentes a nivel internacional	20
	2.1.3. Estado del arte	21
	2.2. Marco conceptual	21
	2.2.1. Concreto permeable	21
	2.2.2. Cemento Portland	22
	2.2.3. Agregado	22

2.2.4.	Relación agua – cemento (w/c)	. 22
2.2.5.	Permeabilidad	. 22
2.2.6.	Durabilidad	. 23
2.2.7.	Porosidad	. 23
2.2.8.	Infiltración	. 23
2.2.9.	Recarga de acuífero	. 23
2.3. Es	tudio de cantera	. 24
2.3.1.	Agregado Fino	. 24
2.3.2.	Agregado Grueso	. 24
2.4. En	sayos estandarizados para agregado	. 25
2.4.1.	Muestreo	. 25
2.4.2.	Ensayo granulométrico	. 25
2.4.3.	Contenido de humedad total del agregado por secado	. 26
2.4.4.	Ensayo peso unitario y vacío del agregado	. 27
2.4.5.	Peso específico y absorción del agregado grueso	. 28
2.4.6.	Material fino que pasa el tamiz N°200	. 30
2.4.7.	Gravedad especifica y absorción de finos	. 30
2.4.8.	Abrasión Los Ángeles	. 31
2.4.9.	Durabilidad al sulfato de Magnesio	. 33
2.5. Pro	uebas estandarizadas para el concreto	. 33
2.5.1.	Elaboración y curado de especímenes de concreto	. 33
2.5.2.	Refrentado de testigos de concreto (capping)	. 34
2.5.3.	Resistencia a la compresión	. 34
2.5.4.	Asentamiento del concreto de cemento Portland	. 35
2.5.5.	Resistencia flexión del concreto (MR)	. 35
2.5.6.	Ensayo cantabro de pérdida por desgaste	. 37
2.5.7.	Ensayo permeabilidad	. 37

2.5.8. Ensayo Infiltración	38
CAPITULO III: FORMULACIÓN DE HIPÓTESIS	39
3.1. Hipótesis de la investigación	39
3.1.1. Hipótesis general	39
3.1.2. Hipótesis Especificas	39
CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN	40
4.1. Tipo y Diseño de la Investigación	40
4.2. Limitaciones de la investigación	40
4.3. Alcance de la investigación	41
4.4. Población y muestra	41
4.5. Técnicas de recolección de datos	42
4.5.1. Instrumentos de investigación	42
4.6. Enfoque del Estudio	43
4.7. Análisis e Interpretación de la Información	43
4.8. Operacionalización de las Variables	44
CAPÍTULO V: RESULTADOS DE LA INVESTIGACIÓN	45
5.1. Estudio de Cantera	45
5.1.1. Cantera del Agregado fino	45
5.1.2. Cantera del Agregado grueso	47
5.2. Agregado fino	53
5.2.1. Agregado fino – cantera "Cunyac"	53
5.2.2. Agregado fino - cantera "Machu Picchu"	54
5.3. Propiedades del agregado grueso	54
5.3.1. Cantera "Huillque"	54
5.3.2. Cantera "Pisac"	55
5.3.3. Cantera "Quiquijana"	56
5.3.4. Cantera "Vicho"	56

5.3.5.	Cantera "Zurite"	57
5.4. Dis	seño de mezcla	57
5.4.1.	Consistencia	58
5.4.2.	Proporciones	58
5.5. Pro	opiedades mecánicas	59
5.5.1.	Resistencia a compresión	59
5.5.2.	Resistencia a flexión	60
5.5.3.	Perdida al desgaste o cántabro	60
5.6. Pro	opiedades hidráulicas	61
5.6.1.	Ensayo de permeabilidad	61
5.6.2.	Ensayo de infiltración	61
5.7. Est	tudio hidrológico	61
5.7.1.	Precipitación	62
5.7.2.	Intensidad	63
5.7.3.	Duración	63
5.7.4.	Frecuencia	64
5.7.5.	Análisis de tormenta	64
CAPÍTULO	VI: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	66
6.1. Ag	regado	66
6.1.1.	Propiedades y accesibilidad del agregado fino	66
6.1.2.	Propiedades y accesibilidad del agregado grueso	66
6.2. Dis	seño de mezcla	68
6.2.1.	Relaciones y materiales	68
6.3. Pro	opiedades mecánicas	69
6.3.1.	Resistencia a compresión	69
6.3.2.	Resistencia a flexión	70
6.3.3.	Análisis ensayo Cántabro	71

6.	3.4. Relación MR vs f'c	72
6.4.	Propiedades hidráulicas	74
6.	4.1. Permeabilidad	74
6.	4.2. Infiltración	75
6.5.	Estudio hidrológico	75
CAPÍT	ULO VII: CONCLUSIONES Y RECOMENDACIONES	77
7.1.	Conclusiones	77
7.2.	Recomendaciones	78
Referer	icias bibliográficas	79
ANEX	OS	83
a.	Panel fotográfico	83
b.	Procedimiento ensayos de laboratorio de los agregados	88
c.	Procedimiento ensayos de laboratorio concreto	96
d.	Fichas de laboratorio ensayos de laboratorio	103
e.	Diseño de mezcla	146
f.	Fichas de laboratorio ensayos concreto permeable	151
g.	Certificaciones y/o fichas técnicas	159
h.	Matriz de consistencia	169
Índice de tabla	s	
	IDAD MINIMA MUESTRA AGREGADO GRUESO O GLOBAL	
=	ERIMIENTO TAMIZADO DEL AGREGADO GRUESO	
	ERIMIENTO TAMIZADO DEL AGREGADO FINO	
	TRA DEL AGREGADOTRA DEL AGREGADO	
	IDAD MÍNIMA DE MUESTRA	
	A APLICADA A CADA GRADACIÓN	
	ACIÓN DE LAS MUESTRAS DEL AGREGADO GRUESO	
	IDAD MUESTRAS PARA ENSAYOS	

TABLA 10. OPERACIONALIZACIÓN DE VARIABLES	44
TABLA 11. CARACTERÍSTICAS DE LA CANTERA "CUNYAC"	46
TABLA 12. CARACTERÍSTICAS DE LA CANTERA "MACHUPICCHU"	
TABLA 13. CARACTERÍSTICAS DE LA CANTERA "HUILLQUE"	48
TABLA 14. CARACTERÍSTICAS DE LA CANTERA "PISAC"	49
TABLA 15. CARACTERÍSTICAS DE LA CANTERA "QUIQUIJANA"	51
TABLA 16. CARACTERÍSTICAS DE LA CANTERA "VICHO"	52
TABLA 17. CARACTERÍSTICAS DE LA CANTERA "ZURITE"	53
TABLA 18. AGREGADO FINO "CUNYAC"	53
TABLA 19. AGREGADO FINO "MACHU PICCHU"	54
TABLA 20. AGREGADO GRUESO "HUILLQUE"	54
TABLA 21. AGREGADO GRUESO "PISAC"	55
TABLA 22. AGREGADO GRUESO "QUIQUIJANA"	
TABLA 23. AGREGADO GRUESO "VICHO"	56
TABLA 24. AGREGADO GRUESO "ZURITE"	57
TABLA 25. PROPIEDADES DE LOS MATERIALES	57
TABLA 26. CONSISTENCIA DE LA MEZCLA	58
TABLA 27. PROPORCIÓN EN PESO MATERIALES	58
TABLA 28. VALORES RESISTENCIA A COMPRESIÓN	59
TABLA 29. VALORES RESISTENCIA A FLEXIÓN	60
TABLA 30. PERDIDA POR DESGASTE	60
TABLA 31. PERMEABILDAD	
TABLA 32. INFILTRACIÓN	61
TABLA 33. REGISTRO DE PRECIPITACIÓN MENSUAL ESTACIÓN METEOROLÓGICA DE PERAYOC	62
TABLA 34. HIDROGRAMA ANUAL ESTACIÓN METEOROLÓGICA DE PERAYOC	63
TABLA 35: INTENSIDAD DURACIÓN	64
TABLA 36. COMPARACIÓN PROPIEDADES AGREGADO FINO	66
TABLA 37. COMPARACIÓN PROPIEDADES DEL AGREGADO GRUESO	67
TABLA 38. ENSAYO DURABILIDAD AL SULFATO DE MAGNESIO	68
TABLA 39. DISEÑO DE MEZCLA DEL CONCRETO PERMEABLE	69
TABLA 40. RESISTENCIA A COMPRESIÓN DEL CONCRETO	69
TABLA 41. ANÁLISIS RESISTENCIA A FLEXIÓN (MR)	70
TABLA 42. ENSAYO DE PERDIDA AL DESGASTE O CÁNTABRO	71
TABLA 43. TABLA VALORES XI Y YI	73
TABLA 44. PERMEABILIDAD DEL CONCRETO PERMEABLE	74
TABLA 45. INFILTRACIÓN DEL CONCRETO PERMEABLE	75
TABLA 46. INTENSIDAD DE DISEÑO VS PERMEABILIDAD E INFILTRACIÓN	75

Índice de figuras

FIGURA 1. CONCRETO PERMEABLE COMO SUPERFICIE DE RODADURA	
FIGURA 2. PERCOLACIÓN DEL AGUA VS EL CONTENIDO DE AIRE	23
FIGURA 3. TIPOS DE FRACTURA EN EL CONCRETO	34
FIGURA 4. ENSAYO DE FLEXIÓN DE VIGAS	36
FIGURA 5. PERMEÁMETRO DE CARGA VARIABLE	
FIGURA 6. UBICACIÓN DE LA CANTERA CUNYAC, VISTA SATELITAL	45
FIGURA 7. UBICACIÓN DE LA CANTERA MACHUPICCHU, VISTA SATELITAL	46
FIGURA 8. UBICACIÓN DE LA CANTERA HUILLQUE, VISTA SATELITAL	47
FIGURA 9. UBICACIÓN DE LA CANTERA PISAC, VISTA SATELITAL	48
FIGURA 10. UBICACIÓN DE LA CANTERA DE QUIQUIJANA, VISTA SATELITAL	50
FIGURA 11. UBICACIÓN DE LA CANTERA VICHO, VISTA SATELITAL	51
FIGURA 13. UBICACION DE LA CANTERA DE ZURITE, VISTA SATELITAL	52
FIGURA 13. ENSAYO ABRASIÓN "LOS ANGELES"	67
FIGURA 14. COMPARACIÓN ENSAYO DURABILIDAD AL SULFATO DE MAGNESIO	68
FIGURA 15. COMPARACIÓN RESISTENCIA A COMPRESIÓN	70
FIGURA 16. COMPARACIÓN RESISTENCIA A FLEXIÓN	
FIGURA 17. COMPARACIÓN RESULTADOS ENSAYO CÁNTABRO	72
FIGURA 18. GRAFICA MR VS F'C	72
FIGURA 19. COMPARACIÓN PERMEABILIDAD	74
FIGURA 20. COMPARACIÓN INFILTRACIÓN	75

Resumen

La presente investigación tiene como objetivo desarrollar mezclas de concreto permeable con adición de agregado fino en porcentajes que van desde el 11% al 15% en volumen del total de la mezcla por metro cúbico, a ser utilizado en el diseño de pavimentos de bajo volumen de tránsito en la Región de Cusco.

La investigación utiliza las recomendaciones y el método para diseño de mezclas de concreto permeable de acuerdo al reporte ACI 522R-10 utilizando una mezcla de concreto permeable patrón con 0% de agregado fino adicionando posteriormente porcentajes de agregado fino que van desde el 11% hasta el 15%; las muestras son ensayadas en el laboratorio obteniendo valores de: Resistencia a compresión (f'c), resistencia a flexión (MR), constante de permeabilidad (K), infiltración (I), porcentaje de pérdida de masa del concreto permeable por abrasión y ataque del sulfato de magnesio al agregado.

Se desarrollaron ensayos en laboratorio para determinar el agregado grueso adecuado para la elaboración del concreto permeable, el proveniente de la cantera de Pisac cumple con los valores requeridos de resistencia a la abrasión y ataque de sulfatos. La elección del agregado fino tuvo en cuenta la viabilidad y el costo de traslado, siendo el agregado ideal el procedente de la cantera de Cunyac.

Los resultados promedios de los ensayos a compresión y flexión del concreto patrón fueron de f'c = 100,15 kgf/cm² y MR = 10,94 kgf/cm² respectivamente, mientras que con los añadidos de agregado fino del 11%, 12%, 13%, 14% y 15% fueron f'c = 103,83 kgf/cm² y MR = 11,95 kgf/cm²; f'c = 120,37 kgf/cm² y MR = 12,90 kgf/cm²; f'c = 123,43 kgf/cm² y MR = 21,34 kgf/cm²; f'c = 155,02 kgf/cm² y MR = 24,90 kgf/cm²; f'c = 186,63 kgf/cm² y MR = 29,99 kgf/cm² respectivamente. Con respecto a la permeabilidad, los resultados fueron de 1,07 cm/s para el concreto patrón, y para los añadidos de agregado fino del 11%, 12%, 13%, 14% y 15% fueron de 0,99 cm/s; 0,92 cm/s; 0,82 cm/s; 0,64 cm/s; 0,44 cm/s respectivamente.

En cuanto a la permeabilidad, propiedad importante en el concreto permeable, se observó que la mezcla patrón presentó un valor de 1,07 cm/s, mientras que las mezclas con adiciones de agregado fino del 11%, 12%, 13%, 14% y 15% registraron valores decrecientes de 0,99 cm/s, 0,92 cm/s, 0,82 cm/s, 0,64 cm/s, y 0,44 cm/s, respectivamente. Estos resultados muestran una disminución de la permeabilidad a medida que se incrementa el porcentaje de agregado fino, lo cual es crucial para aplicaciones donde se busca un equilibrio entre resistencia mecánica y capacidad de drenaje.

Los resultados indican que la mezcla con 15% de agregado fino cumplen con la resistencia, y se observa un notable aumento en la resistencia con respecto a la mezcla patrón, aunque con una disminución de la permeabilidad. Esto sugiere que las mezclas con altos porcentajes de agregado fino son adecuadas para situaciones donde la resistencia es prioritaria, pero se debe considerar el impacto en la capacidad de infiltración del pavimento.

Palabras clave: concreto permeable, agregado fino, permeabilidad, resistencia, abrasión.

Abstract

The present research aims to develop permeable concrete mixes with the addition of fine aggregate in percentages ranging from 11% to 15% by volume of the total mix per cubic meter, to be used in the design of low-traffic pavements in the Cusco region.

The research follows the recommendations and method for designing permeable concrete mixes according to the ACI 522R-10 report, using a standard permeable concrete mix with 0% fine aggregate, to which percentages of fine aggregate ranging from 11% to 15% were subsequently added. The samples were tested in the laboratory, obtaining values for compressive strength (f'c), flexural strength (MR), permeability coefficient (K), infiltration rate (I), percentage of mass loss of permeable concrete due to abrasion, and magnesium sulfate attack on the aggregates.

Laboratory tests were conducted to determine the appropriate coarse aggregate for the production of permeable concrete. The material from the Pisac quarry met the required values for abrasion resistance and sulfate attack. The selection of the fine aggregate considered the feasibility and transportation cost, with the ideal aggregate being sourced from the Cunyac quarry.

The average results of the compressive and flexural strength tests for the standard concrete were f'c = 100.15 kgf/cm² and MR = 10.94 kgf/cm², respectively. For the mixes with fine aggregate additions of 11%, 12%, 13%, 14%, and 15%, the results were f'c = 103.83 kgf/cm² and MR = 11.95 kgf/cm²; f'c = 120.37 kgf/cm² and MR = 12.90 kgf/cm²; f'c = 123.43 kgf/cm² and MR = 21.34 kgf/cm²; f'c = 155.02 kgf/cm² and MR = 24.90 kgf/cm²; f'c = 186.63 kgf/cm² and MR = 29.99 kgf/cm², respectively.

Regarding permeability, the results were 1.07 cm/s for the standard concrete, and for the fine aggregate additions of 11%, 12%, 13%, 14%, and 15%, the values were 0.99 cm/s, 0.92 cm/s, 0.82 cm/s, 0.64 cm/s, and 0.44 cm/s, respectively.

Regarding permeability, an important property in permeable concrete, it was observed that the standard mix showed a value of 1.07 cm/s, while the mixes with fine aggregate additions of 11%, 12%, 13%, 14%, and 15% recorded decreasing values of 0.99 cm/s, 0.92 cm/s, 0.82 cm/s, 0.64 cm/s, and 0.44 cm/s, respectively. These results show a decrease in permeability as the percentage of fine aggregate increases, which is crucial for applications where a balance between mechanical strength and drainage capacity is sought.

The results indicate that the mix with 15% fine aggregate meet the strength requirement, and a notable increase in strength is observed compared to the standard mix, although with a decrease in permeability. This suggests that mixes with high percentages of fine aggregate are suitable for situations where strength is a priority, but the impact on the pavement's infiltration capacity must be considered.

Keywords: pervious concrete, fine aggregate, permeability, resistance, abrasion.

Introducción

El concreto es un material versátil ampliamente usado en la construcción, especialmente utilizado como superficie de rodadura en pavimentos, los cuales tienen una superficie impermeable que impide que el agua penetre en el suelo. Además, el uso generalizado de pavimentos impermeables en áreas urbanas ocasiona problemas relacionados a la recarga natural de acuíferos y eleva el riesgo de inundaciones debido a la lluvia.

Es por ello, el concreto permeable o poroso se desarrolló como una solución alternativa al drenaje del agua de lluvia en áreas urbanas; sin embargo, en la región Cusco el concreto permeable aún no se utiliza.

Es necesario entonces realizar estudios relacionados con las propiedades mecánicas y de permeabilidad del concreto permeable, además de identificar los materiales locales necesarios para su producción, así como el diseño de mezcla adecuado que pueda satisfacer las propiedades necesarias para ser aplicado en pavimentos de bajo volumen de tránsito en la región cusco.

Generalmente, el concreto permeable se caracteriza por poseer una estructura de poros interconectados con tamaños que varían entre 0.3 cm hasta 1 cm, lo que permite al agua pasar desde la superficie hacia la capa subyacente del concreto permeable.

La conformación del concreto permeable está basada en la mezcla de agregado grueso, pasta de cemento y una cantidad mínima o nula de agregado fino, lo que da como resultado la estructura de poros interconectados.

El concreto permeable no está reglamentado a nivel nacional en el Perú; sin embargo, existen algunas investigaciones que sugieren como producir concreto permeable con agregado correspondientes al huso granulométrico N°8 y N°89 (tamaño máximo nominal del agregado grueso 3/8" o 9.5 mm), los cuales no son comerciales en la región Cusco. Es por ello necesario realizar en la investigación el análisis de agregado provenientes de canteras locales que posean tamaños disponibles comercialmente (Tamaño máximo nominal 1/2" o 12.5 mm) para la elaboración del concreto permeable.

Se debe destacar que, las características fundamentales del concreto permeable son su ligereza, alta permeabilidad y baja relación agua-cemento, características logradas por la poca o nula cantidad de agregado fino en la mezcla. La investigación busca identificar el porcentaje de agregado fino añadido a la mezcla entre el 11% y 15%, el cual mantenga cierta permeabilidad (>0.2 cm/s) y propiedades mecánicas aceptables para el concreto permeable.

Para finalizar, el concreto permeable se considera amigable con el entorno debido al beneficio que aporta, tales como el control de la escorrentía superficial y recarga de acuíferos, por lo que realizar esta investigación no solo sería técnicamente útil sino también ambientalmente amigable en zonas urbanas con bajo volumen de tránsito.

Justificación

La investigación de nuevos materiales y técnicas para pavimentos rígidos es crucial para mejorar las características y atributos del concreto utilizado en la actualidad. El estudio del concreto hidráulico permeable es especialmente relevante para pavimentos rígidos urbanos de bajo volumen de tránsito en la región de Cusco, donde la acumulación del agua de lluvia en la superficie del pavimento es un problema recurrente. El concreto permeable surge como una alternativa complementaria para manejar la escorrentía superficial y mejorar la gestión del agua.

El presente estudio se justifica por su potencial para promover el uso del concreto permeable en la construcción de aceras, ciclovías, estacionamientos, canchas deportivas y pavimento rígido urbano.

Al permitir la infiltración del agua de lluvia en lugar de acumularse en la superficie, el concreto permeable puede contribuir a reducir el estancamiento del agua y, por ende, mitigar el problema asociado con la acumulación de agua en la superficie del pavimento, esta propiedad es particularmente importante en áreas con precipitaciones constantes y topografía casi llana.

El concreto permeable ofrece la ventaja de presentar mayor adherencia entre el neumático y la superficie del pavimento permeable en comparación al pavimento impermeable, además de ser una opción ambientalmente amigable.

Facilita la recuperación de aguas superficiales, promoviendo la infiltración hacia el suelo y las raíces de la vegetación, lo que no es posible con pavimentos impermeables.

La identificación de canteras locales que proporcionen agregado con las propiedades adecuadas es necesaria para la producción de concreto permeable en Cusco. Determinar las propiedades del agregado, garantiza que la mezcla de concreto permeable endurecida tenga la resistencia a compresión y flexión necesaria para ser aplicable en pavimentos rígidos urbanos de bajo volumen de tránsito, alineándose con las recomendaciones del reporte ACI 522R-10.

En resumen, la investigación justifica la necesidad de desarrollar y aplicar concreto permeable en zonas urbanas de bajo volumen de tránsito en la región Cusco, abordando tanto el problema de acumulación de agua de lluvia, así como el beneficio ambiental y funcional que poseen los pavimentos elaborados con concreto permeable.

CAPÍTULO I: PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN

1.1. Planteamiento del problema de investigación

En la ciudad de Cusco, aún no se hace uso del concreto hidráulico permeable en pavimentos rígidos urbanos de bajo volumen. Para su implementación efectiva, es crucial determinar las propiedades necesarias de este concreto, que incluye la resistencia mecánica, la permeabilidad y la durabilidad. Además, es fundamental identificar canteras locales accesibles que proporcionen agregado adecuados para la producción del concreto permeable.

Es por ello que la presente investigación se centra en el desarrollo de mezclas de concreto hidráulico permeable con la incorporación de distintos porcentajes de agregado fino, aplicables al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región de Cusco. A pesar de que el diseño y producción del concreto permeable es similar al concreto tradicional, la principal característica del concreto permeable es la de permitir el paso del agua superficial hacia el suelo.

En particular, la investigación busca estudiar la variación de las propiedades del concreto permeable con diferentes porcentajes de agregado fino y agregado seleccionados de canteras locales.

Esta investigación busca también determinar la mezcla de concreto permeable óptima para obtener un concreto permeable que pueda ser utilizado en pavimentos rígidos urbanos de bajo volumen de tránsito en la región de Cusco, asegurando que el concreto permeable cumpla con los requisitos necesarios de resistencia, durabilidad y permeabilidad recomendadas por el reporte ACI 522R-10.

1.2. Formulación del problema de investigación

1.2.1 Problema General

• **PG:** ¿El desarrollo de mezclas de concreto hidráulico permeable incorporando porcentajes fijos de agregado fino podrá ser utilizado para el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10?

1.2.2 Problemas Específicos

- **PE1:** ¿Cuáles son los agregados que tienen las propiedades adecuadas para la mezcla de concreto hidráulico permeable que puedan aplicarse en pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10?
- PE2: ¿Cuál es el diseño de mezcla adecuado de concreto hidráulico permeable, incorporando un porcentaje fijo entre el 11% y 15% de agregado fino, que ofrezca una resistencia a compresión y

- flexión aplicable al diseño pavimentos rígidos urbanos de bajo volumen de tránsito de la región Cusco, usando el reporte ACI 522R-10?
- **PE3**: ¿Cuál es el diseño de mezcla adecuado de concreto hidráulico permeable, incorporando un porcentaje fijo entre el 11% y 15% de agregado fino, que ofrezca un coeficiente de permeabilidad e infiltración aplicable al diseño pavimentos rígidos urbanos de bajo volumen de tránsito en la región del Cusco, usando el reporte ACI 522R-10?

1.3. Objetivos de la investigación

1.3.1 Objetivo General

 OG: Desarrollar una mezcla de concreto hidráulico permeable, incorporando un porcentaje fijo de agregado fino, para el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10.

1.3.2 Objetivos específicos

- **OE1:** Identificar los agregados que tienen las propiedades adecuadas para la mezcla de concreto hidráulico permeable a ser utilizados en el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10.
- OE2: Realizar el diseño adecuado de la mezcla de concreto hidráulico permeable, incorporando un
 porcentaje fijo entre el 11% y 15% de agregado fino, que tenga una resistencia a compresión y
 flexión aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito de la región
 Cusco, usando el reporte ACI 522R-10.
- OE3: Realizar el diseño adecuado de la mezcla de concreto hidráulico permeable, incorporando un porcentaje fijo entre el 11% y 15% de agregado fino, que ofrezca un coeficiente de permeabilidad e infiltración aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región cusco, usando el reporte ACI 522R-10.

CAPÍTULO II: MARCO TEÓRICO Y CONCEPTUAL

2.1. Antecedentes y estado del arte

2.1.1. Antecedentes a nivel nacional

En la tesis de pregrado publicada en el año 2023 titulada: "Concreto permeable en la gestión de aguas pluviales, a nivel piloto", desarrollada en la Universidad Nacional del Callao, tiene como objetivo estudiar al concreto permeable como una alternativa de control de aguas pluviales a causa de las precipitaciones generadas por el fenómeno del niño, analizando las propiedades del concreto permeable con adición de agregado fino en porcentajes del 0% y 10%, obteniendo los siguientes resultados: Resistencia a compresión del concreto igual a 159,94 kgf/cm², permeabilidad del concreto permeable igual a 1,34 cm/s y caudal de infiltración igual a 5,58 l/s. Concluyendo con la posibilidad de implementar el concreto permeable en pavimentos como alternativa medioambiental en la gestión de aguas pluviales (Pacheco y Seminario, 2023).

La tesis de pregrado disponible en el repositorio de la Universidad Cesar Vallejo "Diseño de mezcla de concreto permeable para uso en pavimento rígido, Piura 2021", tiene por objetivo determinar el diseño de mezcla de concreto permeable para la ciudad de Piura mediante 3 diseños de mezcla con porcentajes de agregado fino adicionado a la mezcla, además de estudiar las propiedades de los agregados y el concreto permeable de acuerdo a normativas internacionales, la tesis presenta la carácterística del diseño no experimental-transversal con nivel de investigación descriptivo; el resultado es el diseño de mezcla con 93% de incidencia de agregado grueso y 7% de agregado fino, llegando a una resistencia a compresión igual a 210 kgf/cm² y coeficiente k de permeabilidad igual a 20,23% (Castillo y Saavedra, 2021).

La tesis de pregrado titulada **"Evaluación de concreto permeable en vías peatonales como alternativa de drenaje pluvial"**, publicada en el repositorio de la Universidad Perunana Los Andes, tiene el objetivo de "evaluar el concreto permeable en vías peatonales como alternativa de drenaje pluvial" al elaborar mezclas con adición de agregado fino , incorpora aditivo y variar la relación w/c (agua-cemento), para luego realizar veredas de 1.20 m x 1.00 m, el resultado de la resistencia a compresión alcanza el valor de 175,26 kgf/cm² y módulo de rotura igual a 31,03 kgf/cm² correspondiente a la muestra PP17; mientras que para la muestra PP18 alcanza la resistencia a compresión igual a 176,02 kgf/cm² y módulo de rotura igual a 28,54 kgf/cm², la constante de permeabilidad k de la muestra PP17 alcanzó 0,37 cm/s y la muestra PP18 igual a 0,39 cm/s; llegando a concluir en la tesis que "la permeabilidad se relaciona significativamente con el desempeño del concreto permeable en vías peatonales como alternativa de drenaje pluvial, donde a mayor permeabilidad la resistencia a compresión y flexión del concreto permeable se reduce" (Jesús y De la Cruz, 2021).

La tesis de pregrado publicada con el título: "Evaluación de las propiedades del concreto permeable en pavimentos especiales, Lambayeque, 2018", realizada en la Universidad Señor de Sipán, propone el objetivo de "evaluar las propiedades del concreto permeable, así como obtener las propiedades mecánicas de los agregados y determinar las propiedades mecánica e hidráulicas del concreto permeable para pavimentos especiales", elaborando muestras con la adición de agregado fino a la mezcla, asi como la evaluación de los agregados y el concreto permeable en estado endurecido, obteniendo el resultado de la resistencia a compresión del concreto permeable igual a 193,33 kgf/cm², módulo de rotura igual a 67,76 kgf/cm² y coeficiente de permeabilidad igual a 10,86 mm/s, finalmente concluye en la tesis con la posibilidad de realizar el diseño de pavimentos especiales urbanos con concreto permeable (Tarifeño, 2019).

2.1.2. Antecedentes a nivel internacional

La investigacion titulada: "Resistencia y propiedades microestructurales del concreto permeable elaborado con diferentes proporciones de finos", busca determinar las propiedades de resistencia mecánica y estudiar la microestrucrura del concreto permeable adicionando agregado fino en porcentajes de 0%, 10% y 20% en reemplazo del agregado grueso y la relación de la pasta con el agregado en proporciones del 0,25; 0,2 y 0,16 en 9 diseños de mezcla para el concreto permeable con 4 gradaciones del agregado divididas en 3 proporciones, resultando la mezcla de concreto permeable, con la relación pasta-agregado igual a 0,25 y agregado fino en un porcentaje del 20% del agregado grueso, alcanzar una mejora significativa del 17,1% con respecto al concreto patrón sin finos con resistencia a compresión igual a 15,2 MPa los 28 dias (Nazeer et al., 2023).

La tesis titulada: "Estudio de las carácterísticas del Hormigón Permeable y su implementación en el Uruguay", tiene como objetivo determinar la dosificación del concreto permeable usando estudios previos para elaborar el concreto permeable, para luego determinar las propiedades del concreto permeable como resistencia a compresión, flexión, permeabilidad y densidad mediante la realización de mezclas con dos dosificaciones (w/c = 0,35 y 0,27), alcanzando valores de resistencia a compresión igual a 13,6 MPa, modulo de rotura igual a 2,47 MPa, densidad del concreto permeable igual a 1978,1 kg/m³ y coeficiente de permeabilidad K igual a 0,51 cm/s, concluyendo la tesis con la posibilidad de aplicar el concreto permeable en el diseño de pavimentos en base a la norma brasileña NBR 16414 para pavimentos de concreto permeable, el cual considera un valor mínimo del modulo de rotura para pavimentos permeables igual a 2 MPa (Díaz, Herrera y Marrero, 2020).

El concreto permeable estudiado en la tesis titulada: "Estudio experimental de concretos permeables con agregados andesíticos", para obtener el grado de maestro en la UNAM, plantea el objetivo de estudiar al concreto permeable y su aplicación en pavimentos mediante el análisis de las propiedades

mecánicas e hidraúlicas de mezclas elaboradas con agregados andesíticos, elaborando las mezclas de concreto permeable con vacios entre el 15% y 20% y tamaños del agregado entre 3/8" y 3/4"; además de incorporar agregado fino y mantener la relación agua – cemento igual a 0,35; llegando a la conclusión de la mezcla con 15% de vacíos, densidad igual a 1944 kg/cm³, resistencia a compresion igual a 215 kg/cm², modulo de rotura igual a 46 kg/cm² y coeficiente de permeabilidad igual a 0,48 cm/s como la mezcla con mejor desempeño del concreto permeable en el diseño de pavimentos (Pérez, 2009).

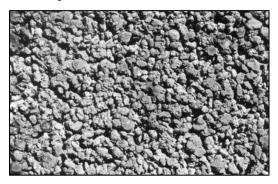
2.1.3. Estado del arte

El concreto permeable es una de las soluciones a la recarga de acuíferos naturales, debido al uso de pavimentos rígidos impermeables que no permiten la recarga de los mismos, al impedir la infiltración de la escorrentía superficial.

En Estados Unidos, el concreto permeable es usado en pavimentos de bajo volumen de transito, parqueo de vehículos, superficies de parques, canchas de tennis y ciclovias (Instituto Americano del Concreto comite 522, 2010, p. 3). La aplicación del concreto permeable en pavimentos, veredas y parques, permite la conservación de los recursos hídricos mediante la reducción o eliminación de la escorrentía superficial.

Por lo anterior, el concreto permeable ha cobrado aún más relevancia en el ámbito eco amigable; sin embargo, es necesario realizar mayores investigaciones sobre el concreto permeable en cuanto a las propiedades mecánicas y de permeabilidad.

2.2. Marco conceptual


2.2.1. Concreto permeable

El concreto permeable es definido por el ACI comite 522, (2010a) como "un material que se caracteriza por su baja trabajabilidad (revenimiento cercano al cero), compuesto por cemento portland, agregado grueso y con poca o nula cantidad de agregado fino, además de aditivos y agua" (p. 1).

La estructura del concreto permeable tiene la capacidad de permitir al agua pasar a través de su estructura de poros interconectados, debido a la ausencia o mínima cantidad de finos.

Otra característica importante es que "el concreto permeable es reconocido ampliamente como un material sustentable, el cual reduce la escorrentía del agua de lluvia, mejora la calidad del agua de lluvia y recarga los depósitos de agua" (ACI comite 522, 2010b, p. 1).

Figura 1. Concreto permeable como superficie de rodadura

Fuente: ACI comite 522, 2010c.

2.2.2. Cemento Portland

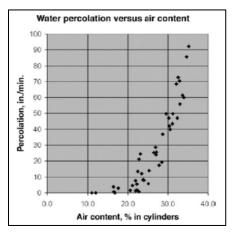
Sanjuán & Chinchón (2014) hablan sobre el cemento Portland en el sector de la construcción:

En el sector de la construcción, el término conglomerante define a todo un conjunto de materiales que tienen la capacidad de adherirse a otros y dar como resultado la cohesión al conjunto, por efecto de reacciones químicas que se producen en su masa y que originan un nuevo todo, entre ellos, está presente el cemento portland. Dicho cemento es considerado en la categoría de conglomerantes hidráulicos, que son aquellos que al incorporar agua endurecen al aire o bajo agua (p. 11).

2.2.3. Agregado

El agregado grueso es el material retenido en el tamiz N°4 (4,75 mm) que pueda ser grava natural o triturada mediante procesos mecánicos, mientras el agregado fino es definido como "el material proveniente de la desintegración natural o artificial de las rocas que pasan el tamiz 3/8" (9,5 mm) con partículas limpias, duras y compactas, libres de polvo y material orgánico" (Lopez, 1992, p. 19).

2.2.4. Relación agua – cemento (w/c)


La relación agua – cemento a considerar en el diseño del concreto permeable varía entre valores del 0,27 al 0,40, siendo el resultado de tomar valores inferiores, una mezcla de consistencia seca y poco trabajable; sin embargo, para valores superiores, el concreto permeable toma una consistencia fluida, la cual tiende a tapar los poros disminuyendo la permeabilidad.

2.2.5. Permeabilidad

La permeabilidad está directamente relacionada con el contenido de vacíos en el concreto permeable. Por ello para conseguir una filtración efectiva del agua el porcentaje de vacíos del concreto debe ser de al menos el 10% como se observa en la **Figura 2**. El coeficiente de permeabilidad "k" del concreto

permeable tiene valores entre 0,2 cm/s a 1,2 cm/s; en ensayos realizados en laboratorio se obtuvieron resultados mayores (Tennis, Leming y Akers, 2004, p. 5).

Figura 2. Percolación del agua vs el contenido de aire

Fuente: ACI comité 522, 2010d

2.2.6. Durabilidad

La "durabilidad" hace referencia a la capacidad del concreto para soportar las diferentes condiciones ambientales que puede experimentar sin que se vean comprometidas sus propiedades mecánicas, siendo los factores que determinan la durabilidad del concreto permeable la resistencia a abrasión y el ataque de sulfatos, los cuales pueden tener un efecto importante en la integridad del agregado y la mezcla del concreto permeable (Perez, 2017, p. 43).

2.2.7. Porosidad

La porosidad en el concreto permeable es "el volumen de los espacios intersticiales abiertos y conectados" (ACI comite 522, 2010e, p. 3) que permiten al agua fluir a través del concreto permeable.

2.2.8. Infiltración

La infiltración en el concreto permeable es "La tasa, usualmente expresada en pulgadas por hora o pulgadas por día, a la que el agua se mueve a través del concreto permeable" (ACI comite 522, 2010f, p.3).

2.2.9. Recarga de acuífero

El proceso por el cual se recargan los acuíferos es definida como "la entrada de agua dentro de la zona saturada donde comienza a hacer parte de las reservas subterráneas" (Vélez y Vásquez, 2004, p. 52), la recarga natural se da por efecto de la precipitación de lluvias en la zona y la infiltración de la escorrentía de aguas superficiales.

2.3. Estudio de cantera

El estudio de canteras, se centra en encontrar el material adecuado para su uso en el diseño de concreto hidráulico permeable aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito, para ello se realiza análisis del agregado proveniente de 5 canteras para la elección del agregado grueso, y 2 canteras para la elección del agregado fino.

2.3.1. Agregado Fino

- 2.3.1.1. <u>Cantera de Cunyac</u>.- Cunyac es conocida por sus canteras de piedra basáltica, utilizada en la construcción de carreteras y obras de infraestructura. El basalto de Cunyac es conocido por su dureza y durabilidad, lo que lo convierte en un material ideal para proyectos que requieren alta resistencia al desgaste (Silva Alfaro & Zumaran Robles, 2020).
- 2.3.1.2. <u>Cantera de Machu Picchu.</u>- Aunque Machupicchu no es considerada una cantera como tal, es uno de los sitios arqueológicos más importantes del mundo, y la construcción de Machupicchu se realizó utilizando granito de alta calidad extraído de canteras cercanas (Silva Alfaro & Zumaran Robles, 2020).

2.3.2. Agregado Grueso

- 2.3.2.1. <u>Cantera de Huillque</u>.- Esta cantera, es una fuente significativa de piedra caliza. Esta piedra ha sido crucial en la construcción de diversas infraestructuras locales, proporcionando materiales duraderos y de alta calidad (Silva Alfaro & Zumaran Robles, 2020).
- 2.3.2.2. <u>Cantera de Pisac</u>.- Esta cantera produce principalmente piedra caliza y granito. Estos materiales son esenciales para la conservación de los sitios arqueológicos de la región, así como para la construcción de nuevas infraestructuras (Escuela Profesional de Arquitectura, 2023).
- 2.3.2.3. <u>Cantera de Quiquijana</u>.- En esta zona, se encuentran canteras de piedra arenisca. Este material ha sido ampliamente utilizado tanto en la construcción moderna como en la restauración de edificaciones coloniales debido a su resistencia y durabilidad (Escuela Profesional de Arquitectura, 2023; Silva Alfaro & Zumaran Robles, 2020).
- 2.3.2.4. <u>Cantera de Vicho</u>.- Esta zona es conocida por sus canteras de piedra ideal para uso en construcción. La extracción de estos materiales ha contribuido significativamente al desarrollo económico local y al suministro de materiales de alta calidad (Silva Alfaro & Zumaran Robles, 2020).
- 2.3.2.5. <u>Cantera de Zurite</u>.- Esta cantera, es una fuente significativa de piedra caliza. Esta piedra ha sido crucial en la construcción de diversas infraestructuras locales, proporcionando

materiales duraderos y de alta calidad (Silva Alfaro & Zumaran Robles, 2020; Escuela Profesional de Arquitectura, 2023).

2.4. Ensayos estandarizados para agregado

2.4.1. Muestreo

El muestreo se lleva a cabo tomando como referencia la Norma Técnica Peruana 400.010, obteniéndose muestras de depósitos con un mínimo de 10 kg de agregado fino y 10 kg de agregado grueso, las cuales fueron transportadas en depósitos sellados para evitar cualquier contaminación.

2.4.2. Ensayo granulométrico

El ensayo granulométrico permite determinar la gradación de materiales para que cumplan los requisitos exigidos en las especificaciones técnicas de acuerdo con la Norma Técnica Peruana (NTP) 400.012. El ensayo consiste en separar y clasificar el agregado por tamaño mediante una serie de tamices de aberturas progresivamente menores. El proceso incluye secar la muestra de agregado hasta peso constante, colocarla en la serie de tamices, agitarlos mecánicamente para permitir la clasificación, y pesar el material retenido en cada tamiz. Los resultados se expresan en un gráfico que muestra la distribución del tamaño de las partículas, lo cual permite determinar la granulometría del agregado, esencial para evaluar su idoneidad en la construcción. El diagrama de flujo del procedimiento es presentado en los anexos; además la cantidad de muestra del agregado fino necesaria para realizar el ensayo debe ser de al menos 300 gramos, mientras que para el agregado grueso la cantidad de muestra está indicada en la **Tabla 1**.

Tabla 1. Cantidad minima muestra agregado grueso o global

Cantidad mínima de muestra del agregado grueso o global					
Tamaño Máximo Nominal Aberturas	Cantidad de la muestra de ensayo. Mínimo				
Cuadradas mm (pulg)	kg(lb)				
9,5 (3/8)	1 (2)				
12,5 (1/2)	2 (4)				
19,0 (3/4)	5 (11)				
25,0 (1)	10 (22)				
37,5 (1 1/2)	15 (33)				
50 (2)	20 (44)				
63 (2 1/2)	35 (77)				
75 (3)	60 (130)				
90 (3 1/2)	100 (220)				
100 (4)	150 (330)				
125 (5)	30060)				

Fuente: Comisión de Reglamentos Técnicos y Comerciales, 2001

El agregado grueso para la elaboración del concreto debe cumplir uno de los husos granulométricos presentados en la **Tabla 2**, según el ASTM C33.

Tabla 2. Requerimiento tamizado del agregado grueso

Número de	Cantidades más finas que Cada Tamiz de laboratorio (Abertura Cuagrada), Porcentaje Masa													
tamaño	(Tamices con abertura cuadrada)	100 mm (4 pulg)	90 mm (3 1/2 pulg)	75 mm (3 pulg)	63 mm (2 1/2 pulg)	50 mm (2 pulg)	37.5 mm (1 1/2 pulg)	25 mm (1 pulg)	19 mm (3/4 pulg)	12.5 mm (1/2 pulg)	9.5 mm (3/8 pulg)	4.75 mm (No. 4)	2.36 mm (No. 8)	1.18 mm (No. 16)
1	90 a 37.5 mm	100	90 a 100		25 a 60		0 a 15		0 a 5					
2	63 a 37.5 mm			100	90 a 100	35 a 70	0 a 15		0 a 5					
3	50 25 mm				100	90 a 100	35 a 70	0 a 15		0 a 5				
357	50 a 4.75 mm				100	95 a 100		35 a 70		10 a 30		0 a 5		
4	37.5 a 19mm					100	90 a 100	20 a 55	0 a 15		0 a 5			
467	37.5 a 4.75 mm					100	95 a 100		35 a 70		10 a 30	0 a 5		
5	25 a 12.5 mm						100	90 a 100	20 a 55	0 a 10	0 a 5			
56	25 a 9.5 mm						100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5	0 a 5	
57	25 a 4.75 mm						100	95 a 100		25 a 60		0 a 10		
6	19 a 9.5 mm							100	90 a 100	20 a 55	0 a 15	0 a 5		
67	19 a 4.75 mm							100	90 a 100		20 a 55	0 a 10	0 a 5	
7	12.5 a 4.745 mm								100	90 a 100	40 a 70	0 a 15	0 a 5	
8	9.5 a 2.36 mm									100	85 a 100	10 a 30	0 a 5	0 a 5

Fuente: Sociedad Estadounidense para Pruebas y Materiales, 2011

De igual manera los requerimientos del agregado fino se indican en la Tabla 3.

Tabla 3. Requerimiento tamizado del agregado fino

Granulometría del agregado fino						
Tamiz	Porcentaje que pasa					
9,5 mm (3/8 pulg)	100					
4,75 mm (No. 4)	95 a 100					
2,36 mm (No. 8)	80 a 100					
1,18 mm (No. 16)	50 a 85					
600 μm (No. 30)	25 a 60					
300 μm (No. 50)	05 a 30					
150 μm (No. 100)	0 a 10					

Fuente: ASTM, 2011

2.4.3. Contenido de humedad total del agregado por secado

El ensayo para determinar el contenido de humedad total en el agregado, implica medir la cantidad de agua presente en una muestra de agregado. Para ello, se pesa una muestra representativa del material y se somete a secado en un horno a una temperatura determinada hasta que el peso se estabilice. Luego, se vuelve a pesar la muestra seca. La diferencia entre el peso inicial y el peso seco permite calcular el porcentaje de humedad total en la muestra, lo cual es crucial para ajustar las proporciones de agua en las mezclas de concreto (Instituto Nacional de Calidad, 2021)

La cantidad de muestra para el ensayo de contenido de humedad total del agregado según el tamaño máximo nominal del agregado se indica en la **Tabla 4** y el diagrama de flujo del ensayo se presenta en los anexos.

Tabla 4. Muestra del agregado

Tamaño de la muestra del agregado								
Tamaño máximo nominal del agregado mm (pulg)	Masa mínima de la muestra de agregado de peso normal en kg							
4,75 (0,187) No. 4	0,5							
9,5 (3/8)	1,5							
12,5 (1/2)	2							
19,0 (3/4)	3							
25,0(1)	4							
37,5 (1 1/2)	6							
50 (2)	8							

Fuente: Instituto Nacional de Calidad, 2021

Luego de obtenido los datos deseados, se procede a reemplazar dichos datos en la Ecuación 1.

Ecuación 1

$$P = \frac{100(W - D)}{D}$$

Donde:

P: Contenido de humedad total evaporable en la muestra; (%)

W: Masa de la muestra original; (gr)

D: Masa de la muestra seca; (gr)

2.4.4. Ensayo peso unitario y vacío del agregado

El ensayo para determinar el peso unitario y los vacíos del agregado, implica medir el peso del agregado en relación con su volumen y calcular el porcentaje de espacios vacíos entre las partículas. El procedimiento consiste en llenar un recipiente de volumen conocido con el agregado en tres capas, compactando cada capa mediante golpes o vibración. Luego, se pesa el recipiente con el material y se obtiene el peso unitario dividiendo el peso del agregado por el volumen del recipiente. El porcentaje de vacíos se calcula comparando el peso unitario con la densidad del material. Cabe resaltar, que este ensayo es aplicable a agregados con tamaño máximo nominal menor a 125 mm (INDECOPI, 2011). En los anexos

¡Error! No se encuentra el origen de la referencia. se encuentra el diagrama de flujo del ensayo para d eterminar peso unitario y vacíos de los agregados.

Obtenidos los datos de laboratorio, determinar el peso unitario del agregado suelto o compactado con la Ecuación 2 y el contenido de vacíos con la Ecuación 3.

Ecuación 2

$$M = \frac{(G - T)}{V}$$
$$M = (G - T)xF$$

Donde:

M: Peso unitario del agregado; (kg/m³)

G: Peso del recipiente y el agregado; (kg)

T: Peso del recipiente; (kg)

V: Volumen del recipiente de medida; (m³)

F: Factor del recipiente de medida; (m³)

Ecuación 3

$$\%Vacios = \frac{(AxW) - B}{AxW}$$

A: Peso específico aparente

B: Peso unitario de los agregados; (kg/m³)

W: Densidad del agua; 998 kg/m³

2.4.5. Peso específico y absorción del agregado grueso

El ensayo de peso específico y absorción del agregado grueso, conforme a la NTP 400.021, busca determinar la densidad relativa y la capacidad de absorción de agua del agregado. El procedimiento implica sumergir una muestra de agregado seco en agua durante 24 horas, secarla superficialmente y pesarla en su estado saturado. Luego, se mide el peso del agregado mientras está sumergido en agua y, posteriormente, se seca nuevamente para obtener su peso seco. Estos valores permiten calcular el peso específico aparente, el peso específico seco y el porcentaje de absorción, aspectos cruciales para el diseño de mezclas de concreto (INDECOPI, 2013).

La **Tabla 5** indica los pesos mínimos de la muestra para el ensayo y el diagrama de flujo del procedimiento del ensayo definido en los anexos.

Tabla 5. Muestra del agregado

Tamaño de la muestra del agregado				
Tamaño máximo nominal mm (pulg)	Masa mínima de la muestra de ensayo kg (lb)			
12,5 (1/2) o menor	2 (4,4)			
19,0 (3/4)	3 (6,6)			
25,0(1)	4 (8,8)			
37,5 (1 1/2)	5 (11)			
50 (2)	8 (18)			
63 (2 1/2)	12 (26)			
75 (3)	18 (40)			
90 (3 1/2)	25 (55)			
100 (4)	40 (88)			
125 (5)	75 (165)			

Fuente: INDECOPI, 2013

Luego de obtenidos los datos, se procede a determinar el peso específico con la Ecuación 4, Ecuación 5 y Ecuación 6; La absorción del agregado se determina mediante la Ecuación 7.

Peso específico de masa (P_{em}):

Ecuación 4

$$P_{em} = \frac{A}{(B-C)} * 100$$

Donde:

A: Peso muestra seca en el aire; (gr)

B: Peso muestra saturada superficialmente seca en aire; (gr)

C: Peso en el agua de la muestra saturada; (gr)

Peso específico de masa saturada com superficie seca (P_{Esss}):

Ecuación 5

$$P_{eSSS} = \frac{B}{(B-C)} * 100$$

Peso específico aparente (Pea):

Ecuación 6

$$P_{ea} = \frac{A}{(A-C)} * 100$$

Absorción (Ab):

Ecuación 7

$$A_b(\%) = \frac{(B-A)}{A} * 100$$

2.4.6. Material fino que pasa el tamiz N°200

El ensayo de material fino que pasa el tamiz N°200, consiste en determinar la cantidad de partículas finas presentes en un agregado. El procedimiento incluye lavar una muestra de agregado a través del tamiz N°200 utilizando agua para separar las partículas finas del material más grueso. Después de lavar, se seca el material retenido en el tamiz, se pesa, y se calcula el porcentaje de finos que pasa el tamiz en relación con el peso inicial de la muestra. Este porcentaje es clave para evaluar la calidad del agregado en la construcción (INDECOPI, 2002). La **Tabla 6** indica la cantidad mínima de muestra necesaria para realizar el ensayo y el diagrama de flujo del procedimiento a seguir del ensayo en los anexos.

Tabla 6. Cantidad mínima de muestra

Cantidad mínima de muestra						
Tamaño máximo nominal del agregado	Cantidad mínima, g					
4, 75 mm (N°4) o más pequeño	300					
Mayor que 4,75 mm (No. 4) a 9,5 mm (3/8 pulg)	1000					
Mayor que 9,5 mm (3/8 pulg) a 19 mm (3/4 pulg)	2500					
Mayor a 19 mm (3/4 pulg)	5000					

Fuente: INDECOPI, 2002

Luego de obtenidos los datos de laboratorio, se procede a determinar el porcentaje del material fino que pasa el tamiz de 75 um (N°200) con la Ecuación 8.

Ecuación 8

$$A = \frac{B - C}{B} * 100$$

A: Porcentaje material fino que pasa el tamiz 75 μm (N° 200) por lavado; (%)

B: Peso seco de la muestra original; (gr)

C: Peso seco de la muestra después de lavado; (gr)

2.4.7. Gravedad especifica y absorción de finos

El ensayo de gravedad específica y absorción de finos, busca determinar la densidad relativa y la capacidad de absorción de agua del agregado fino. El procedimiento consiste en sumergir una muestra de agregado seco en agua durante 24 horas. Después, se seca la superficie del agregado y se pesa en su estado saturado. Luego, se mide el peso del agregado sumergido en agua y se seca completamente para obtener su peso seco. Estos valores permiten calcular la gravedad específica aparente, la gravedad específica seca y el porcentaje de absorción, aspectos esenciales para el diseño de mezclas de concreto (INDECOPI, 2013).

El diagrama de flujo del procedimiento se indica en los anexos.

El peso específico de masa, Peso específico de masa saturado con superficie seca, Peso específico aparente y Absorción del agregado fino se determinan con la Ecuación 9, Ecuación 10, Ecuación 11 y Ecuación 12 respectivamente.

Peso específico de masa:

Ecuación 9

$$Pe_m = \frac{W_0}{(V - V_a)} * 100$$

Donde:

Pe_m: Peso específico de masa

W₀: Peso en el aire de la muestra seca en el horno, gr

V: Volumen del frasco en cm³

V_a: Peso en gr o volumen en cm³ de agua

Peso específico de masa saturado con superficie seca (Pesss):

Ecuación 10

$$Pe_{SSS} = \frac{500}{(V - V_a)} * 100$$

Peso específico aparente (Pe_a):

Ecuación 11

$$Pe_a = \frac{W_0}{(V - V_a) - (500 - W_0)} * 100$$

Absorción (Ab):

Ecuación 12

$$A_b = \frac{500 - W_0}{W_0} * 100$$

2.4.8. Abrasión Los Ángeles

El ensayo de abrasión "Los Angeles" es un indicador de calidad del agregado mineral, en el cual se mide la degradación del material resultante de una combinación de acciones abrasivas. Para realizar el ensayo es necesaria una masa de la carga de acuerdo con la gradación de la muestra (NTP 400.019), como se presentan en la **Tabla 7** y **Tabla 8**.

Para realizar el ensayo es necesario una muestra determinada por medio del cuarteo, previo al cuarteo, se debe realizar el lavado y secado del material al horno para reducir o eliminar las partículas que pasan la malla N° 200.

La muestra se coloca luego en la máquina de abrasión junto a las esferas cilíndricas, luego la maquina empieza a rotar de 30 a 33 rpm, por 500 revoluciones. Luego de completar las revoluciones se procede a separar el material más fino de la muestra con ayuda del tamiz N° 12. El material retenido en el tamiz N° 12 se lava y seca en el horno, para luego ser pesado y determinar el porcentaje de pérdida con la Ecuación *13*.

Tabla 7. Carga aplicada a cada gradación

Gradación	Número de esferas	Masa de la carga (g)		
A	12	5000 ± 25		
В	11	4584 ± 25		
C	8	3330 ± 25		
D	6	2500 ± 25		

Fuente: INDECOPI, 2014

Tabla 8. Gradación de las muestras del agregado grueso

Tamiz mm (abertura cuadrada)		Masa de tamaño indicado, g			
Que pasa	Retenido sobre	Gradación			
		A	В	C	D
37.5 mm (1 1/2 pulg)	25,0 mm (1 pulg)	1250 ± 25			
25,0 mm (1 pulg)	19,0 mm (3/4 pulg)	1250 ± 25			
19,0 mm (3/4 pulg)	12,5 mm (1/2 pulg)	1250 ± 10	2500 ± 10		
12,5 mm (1/2 pulg)	9,5 mm (3/8 pulg)	1250 ± 10	2500 ± 10		
9,5 mm (3/8 pulg)	6,3 mm (1/4 pulg)			2500 ± 10	
6,3 mm (1/4 pulg)	4,75 mm (N° 4)			2500 ± 10	
4,75 mm (N° 4)	2,36 mm (N°8)				5000 ± 10
Total		5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10

Fuente: INDECOPI, 2014

Luego de realizado los ensayos, determinar el porcentaje de pérdida por abrasión en la máquina Los Ángeles con la Ecuación 13.

Ecuación 13

$$P\% = \frac{100(C - Y)}{C}$$

Donde:

P: Porcentaje de perdida; (%)

C: Masa original de la muestra antes del ensayo; (gr)

Y: Masa de la muestra después del ensayo; (gr)

2.4.9. Durabilidad al sulfato de Magnesio

El método de ensayo para la determinación de la desintegración del agregado en soluciones saturadas de sulfato de Magnesio - MTC E 209, simula la exposición del agregado a la intemperie mediante la inmersión del agregado en soluciones saturadas de sulfato de magnesio (MTC, 2017, p. 302) y debe realizarse debido a la estructura de poros expuesta del concreto permeable, permitiendo el paso del agua proveniente de la la escorrentia superficial, el cual arrastra consigo sustancias que puedan desintegrar el agregado.

El procedimiento que se sigue en el ensayo consiste en seleccionar las muestras del agregado provenientes de las distintas canteras seleccionadas para la investigación. Una vez seleccionadas las muestras, se sumergen en soluciones de sulfato de magnesio por un periodo no menor a 16 horas ni mayor a 18 horas, para luego ser lavadas. Este procedimiento se repite por un número determinado de ciclos. Posteriormente, se determina el procentaje de pérdida con la Ecuación 14:

Ecuación 14

$$\%perdida = \frac{Pi - Pf}{Pi} * 100$$

Donde:

Pi: Peso inicial de la muestra; (gr)

Pf: Peso final de la muestra; (gr)

En los anexos hay figuras que representan visualmente los procedimientos y materiales de cada ensayo.

2.5. Pruebas estandarizadas para el concreto

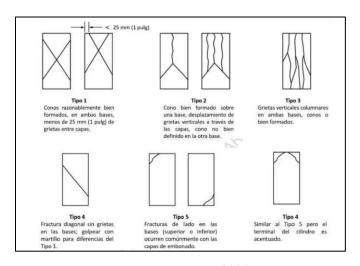
2.5.1. Elaboración y curado de especímenes de concreto

El proceso de elaboración y curado de muestras cilíndricas de concreto realizadas en laboratorio – de acuerdo al MTC E 702 es realizado bajo estrictas condiciones de control y son aquellas muestras realizadas bajo este procedimiento aceptadas en pruebas de calidad y estudios de investigación a edades de 7 y 28 días (MTC, 2017, p. 684).

La mezcla de concreto permeable se vacia dentro de moldes cilíndricos con un diámetro 15 cm y una altura de 30 cm. Pasadas las 24 horas, se retira el concreto permeable endurecido de los moldes y se coloca en tanques de curado llenos de agua hasta alcanzar la edad de 28 dias para su rotura. De iagual manera se realizan las viguetas de concreto permeable en moldes prismáticos con altura igual a 15 cm, largo de 60 cm y ancho igual a 15 cm.

2.5.2. Refrentado de testigos de concreto (capping)

El procedimiento presentado en la NTP 339.033, se refiere a los cilindros de concreto que vayan a ser ensayados con cargas verticales para determinar la resistencia a compresión del concreto (f'c), las muestras deben presentar caras perpendiculares y planas donde se aplique la carga vertical, para lograr las caras planas y perpendiculares se aplican técnicas de refrentado con pasta de cemento, yeso de alta resistencia o la aplicación de una capa de mortero de azufre (Instituto Nacional de Calidad, 2015, p. 1).


Las muestras de concreto permeable elaboradas no presentan caras planas y perpendiculares. Por ello, es necesario realizar el refrentado en ambas caras de la briqueta. El material utilizado es yeso de alta resistencia con una relación agua-yeso igual a 0.3. Al ser mezclado con agua, el yeso de alta resistencia forma una pasta que se coloca en las caras de la briqueta con ayuda de un nivel de mano, logrando así la perpendicularidad de las caras necesaria para las pruebas de rotura.

2.5.3. Resistencia a la compresión

La NTP 339.034 establece el procedimiento para la determinación de la resistencia a compresión de muestras cilíndricas de concreto, aplicable en concretos con densidad superior a 800 kg/m³ (INACAL, 2021, p. 1). La Ecuación 15 se usa para determinar la resistencia a compresión del concreto y la Ecuación 16 para determinar la densidad del concreto.

La NTP 339.034 ilustra los patrones de los tipos de fractura presentes en las muestras cilíndricas de concreto como se muestran en la **Figura 3**.

Figura 3. *Tipos de fractura en el concreto*

Fuente: INACAL, 2021

Ecuación 15

$$f'c = \frac{4000 * p_{max}}{\pi * D^2}$$

Donde:

f'c: Resistencia a la compresión; (MPa)

Pmax: carga máxima; (KN)

D: Diámetro promedio; (mm)

Ecuación 16

$$\rho_S = \frac{4 * 10^9 * W}{L * D^2 * \pi}$$

Donde:

ρs: Densidad de la muestra; (kg/m³)

W: Masa del espécimen en el aire; (kg)

L: Longitud del espécimen; (mm)

D: Diámetro del espécimen; (mm)

Al igual que el concreto convencional, el ensayo para muestras de concreto permeable sigue el mismo procedimiento. Para ello, se retiran las muestras de concreto permeable del estanque de curado y se espera un tiempo hasta que la humedad desaparezca, debido a que en ensayos previos la humedad de las muestras genera resistencias menores a las esperadas. Luego, se procede a refrentar ambas caras de la briqueta y se coloca en la máquina de compresión. La carga vertical se aplica mediante la placa superior, que distribuye la carga en toda la sección transversal de la briqueta. La velocidad a la que se aplica la carga vertical sobre la briqueta es de 530 kgf/s. La norma técnica CE. 010 establece una f'c ≥ 175 kgf/cm² como requisito en pavimentos especiales.

2.5.4. Asentamiento del concreto de cemento Portland

El procedimiento determina la medida del asentamiento en el concreto en estado fresco, realizada en laboratorio o en campo de acuerdo con la NTP 339.035 (INDECOPI, 2009, p. 1).

El concreto permeable en estado fresco se coloca en el cono de Abrams en tres capas de igual altura completando asi la altura del molde cónico. Se utiliza una varilla lisa con punta redondeada para compactar cada capa con 25 golpes. Luego, se retira el cono de Abrams y se coloca invertido al costado del concreto permeable. Con ayuda de una cinta métrica, se mide el asentamiento utilizando la varilla como el punto inicial de medida sobre el molde cónico hasta la distancia que la mezcla de concreto permeable haya descendido. La medida obtenida es el asentamiento del concreto permeable.

2.5.5. Resistencia flexión del concreto (MR)

La NTP 339.078 determina el modulo de rotura con la Ecuación 17 cuando la falla ocurre en el tercio central de la muestra, la Ecuación 18 cuando la falla ocurre fuera del tercio central y está ubicada a una distancia no mayor del 5% de distancia entre los apoyos inferiores de la muestra; sin embargo, si la falla

ocurre a una distancia mayor al 5% de la luz entre apoyos fuera del tercio central, la muestra se descarta (INACAL, 2022, p. 6).

Ecuación 17

$$M_r = \frac{PL}{bh^2}$$

Donde:

Mr: Módulo de rotura; (MPa)

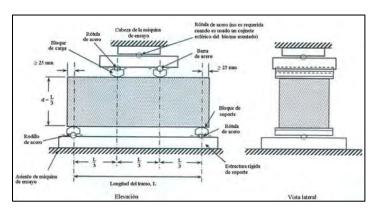
P: Es la carga máxima; (N)

L: Longitud del tramo; (mm)

b: Ancho de la viga; (mm)

h: Altura de la viga; (mm)

Ecuación 18


$$M_r = \frac{3Pa}{bh^2}$$

Donde:

a: Es la distancia desde la falla hasta el apoyo más cercano, medida en el eje central de la cara inferior de la viga; (mm)

La Figura 4 presenta un esquema de la colocación de la muestra en la máquina de ensayo.

Figura 4. Ensayo de flexión de vigas

Fuente: INACAL, 2022

La resistencia a flexión, o modula de rotura, del concreto permeable se determina mediante la aplicación de cargas en el tercio central de las vigas, utilizando la máquina Universal. La falla de la viga ocurre por flexión debido a los puntos centrales de aplicación de la carga. Además, es necesario refrentar el lugar donde se apoyarán las cargas, así como los apoyos donde se coloca la viga de concreto permeable debido a la superficie porosa que presenta el concreto permeable.

2.5.6. Ensayo cantabro de pérdida por desgaste

El ensayo cántabro de pérdida por desgaste es "el procedimiento para la determinación del valor de la pérdida por desgaste de las mezclas asfálticas empleando la máquina de los Angeles" (MTC, 2016, p. 573), y es adaptada a ensayos realizados con muestras de concreto permeable, debido a la estructura de poros interconectados similares a las muestras realizadas a partir de mezclas asfálticas, además el ensayo permite determinar la cohesión entre el agregado y la pasta de cemento endurecida, así como la pérdida de masa por abrasión en la máquina Los Ángeles.

La pérdida de masa por abrasión del concreto permeable se calcula con la Ecuación 19:

Ecuación 19

$$P\% = \frac{P_1 - P_2}{P_1}$$

Donde:

P%: Porcentaje de la pérdida de masa por desgaste en la máquina Los Angeles; (%)

P1: Masa inicial de la muestra; (gr)

P2: Masa final de la muestra, (gr)

2.5.7. Ensayo permeabilidad

el ensayo de permeabilidad determina el coeficiente de permeabilidad mediante un permeámetro de carga variable como se observa en la **Figura 5**, en el permeámetro se coloca la muestra de concreto permeable por el que fluye una cantidad de agua (desde un nivel superior a un nivel inferior) en un determinado tiempo a través de los poros interconectados del concreto permeable (ACI comité 522, 2010g, p. 11), la constante de permeabilidad se determina con la Ecuación 20.

Ecuación 20

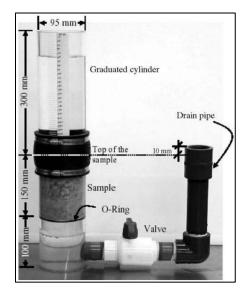
$$K = \left(\frac{A_1}{A_2}\right) * \frac{L}{t} * \ln\left(\frac{h_1}{h_2}\right)$$

Donde:

K: Constante de permeabilidad; (cm/s)

A1: Sección transversal del tubo superior; (cm²)

A2: Sección transversal de la muestra cilíndrica de concreto permeable; (cm²)


L: Longitud de la muestra cilíndrica; (cm)

t: Tiempo transcurrido desde la altura superior del agua descienda a una altura inferior; (s)

h1: altura superior del agua; (cm)

h2: altura inferior del agua; (cm)

Figura 5. Permeámetro de carga variable

Fuente: ACI comité 522, 2010h

2.5.8. Ensayo Infiltración

El ensayo de infiltración del concreto permeable C1701, determina la tasa de infiltración de un pavimento permeable en campo empleando un anillo de infiltración (ASTM, 2023, p. 1), la Ecuación 21 determina la infiltración (I) en el concreto permeable.

Ecuación 21

$$I = \frac{K * M}{(D^2 * t)}$$

Donde:

I: Tasa de infiltración; (mm/h)

M: Masa del agua a infiltrarse; (kg)

D: Diámetro interior del anillo de infiltración; (mm)

t: Tiempo requerido para medir la cantidad de agua que se infiltra en el concreto; (s)

K: factor para el ensayo 4583666000; [(mm³/s)/(kg*h)]

CAPITULO III: FORMULACIÓN DE HIPÓTESIS

3.1. Hipótesis de la investigación

3.1.1. Hipótesis general

 HG: La mezcla de concreto hidráulico permeable con el 15% de agregado fino fijo es aplicable en el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10.

3.1.2. Hipótesis Especificas

- HE1: ¿Serán los agregados provenientes de las canteras de Pisac y Cunyac, comparados con los agregados provenientes de las canteras de Quiquijana, Huillque, Vicho, Zurite, Machupicchu, los que tengan propiedades adecuadas para el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10?
- HE2: El diseño más adecuado de la mezcla de concreto hidráulico permeable, incorporando un porcentaje fijo de agregado fino del 15%, ofrecerá una resistencia a compresión y flexión óptima aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito de la región Cusco, usando el reporte ACI 522R-10.
- HE3: El diseño más adecuado de la mezcla de concreto hidráulico permeable, incorporando un porcentaje fijo de agregado fino del 15%, ofrece un coeficiente de permeabilidad e infiltración aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito de la región Cusco, usando el reporte ACI 522R-10.

CAPÍTULO IV: METODOLOGÍA DE LA INVESTIGACIÓN

4.1. Tipo y Diseño de la Investigación

- Nivel de la investigación "Descriptivo".
- Lógica del proceso de investigación "Inductiva" (de lo particular a lo general).
- El diseño de la investigación será "Experimental" (variable dependiente e independiente) con la característica de ser un diseño con grupo de control, además de seguir un plan estructurado.

En esta investigación, se va a detallar el proceso y características de los diversos ensayos de laboratorio que serán llevados a cabo en el estudio de mezclas del concreto permeable, utilizando diferentes porcentajes de agregado fino añadido al diseño de mezcla patrón del concreto permeable, es por lo que, esta investigación tendrá un tipo y nivel descriptivo en su desarrollo, por el hecho que la investigación se va a apoyar en ensayos realizados en laboratorio para describir las propiedades del concreto permeable.

4.2. Limitaciones de la investigación

La investigación se limita espacialmente a la región Cusco, con limitación temporal correspondiente al periodo 2023 a 2024 y limitada por los siguientes puntos:

- Muestras de agregados provenientes de canteras locales y accesibles en la región Cusco, cercanas al lugar donde se realiza la investigación, en la ciudad del Cusco campus Perayoc de la Universidad Nacional de San Antonio Abad del Cusco.
- La investigación se limita al estudio las propiedades mecánicas y de permeabilidad del concreto permeable en su aplicación como capa de rodadura en pavimentos de bajo volumen de tránsito en la región Cusco. No se abordan ni se desarrollan aspectos relacionados con otras partes del pavimento ni con el diseño completo del mismo.
- El cemento a utilizar en la investigación es el cemento IP "Multipropósito" de la empresa Yura.
- Uso del reporte ACI 522R-10 para el diseño de mezcla del concreto permeable.
- Uso de normativas vigentes en el Perú para determinar las propiedades del agregado y
 propiedades mecánicas del concreto endurecido, además de normas internacionales
 necesarias para determinar la aplicación del concreto permeable en pavimentos con bajo
 volumen de tránsito.

4.3. Alcance de la investigación

Determinar mediante la realización de mezclas de concreto hidráulico permeable, las propiedades mecánicas, hidráulicas (permeabilidad) del concreto permeable para la aplicación en el diseño de pavimentos con bajo volumen de tránsito.

El estudio se llevará a cabo mediante el diseño de un concreto permeable patrón con un 25% de vacíos, para luego añadir a la mezcla porcentajes del 11%, 12%, 13%, 14% y 15% de agregado fino.

4.4. Población y muestra

La muestra de esta investigación está constituida por las mezclas de concreto hidráulico permeable diseñadas específicamente para pavimentos rígidos urbanos de bajo volumen de tránsito en la Región Cusco, utilizando diferentes porcentajes de agregado fino y agregado grueso seleccionados de canteras locales.

La población de investigación es determinada por la norma ASTM C192, "El número de especímenes de prueba y de amasadas de prueba se basan en la práctica determinada y la índole del programa de ensayo. En general, se menciona en los métodos de ensayo o especificaciones para los que se preparan muestras. Usualmente, se moldean tres o más probetas para cada edad" (p.4).

Dado que el objetivo es evaluar las propiedades mecánicas y de permeabilidad del concreto permeable en un contexto local específico, se ha optado por una muestra no probabilístico. Este enfoque es apropiado debido a que se busca entender detalladamente el comportamiento del concreto bajo condiciones experimentales controladas, lo cual requiere una selección dirigida de las muestras en lugar de una muestra aleatoria representativa (Hernandez Sampieri, Fernandez Collado, & Baptista Lucio, 2006).

- Selección Dirigida: La investigación utiliza un enfoque no probabilístico porque el objetivo es crear y evaluar mezclas específicas de concreto permeable. Se realizan propias mezclas y la selección del agregado basándose en su relevancia para el problema investigado y la disponibilidad en Cusco (Hernandez Sampieri, 2006).
- Adaptación al Problema de Investigación: La metodología no probabilística es adecuada dado que se investiga las características específicas del concreto permeable para un estudio concreto. No se busca generalizar a partir de una muestra representativa sino analizar en profundidad cada mezcla y condición experimental (Hernandez Sampieri, 2006).
- Relevancia: La selección de las muestras responde a la necesidad de abordar el problema específico de encontrar una mezcla óptima y evaluarla bajo condiciones experimentales controladas. La investigación está enfocada en obtener información detallada sobre las propiedades del concreto permeable en el contexto de pavimentos urbanos de bajo volumen de tránsito (Hernandez Sampieri, 2006).

• Creación de Muestras: La creación y evaluación de las muestras permite una adaptación precisa a los requisitos del problema de investigación. La investigación no se basa en inferencias estadísticas generalizadas, sino en la observación directa de cómo diferentes mezclas afectan las propiedades del concreto permeable. Esto no es compatible con un enfoque probabilístico, que generalmente requiere aleatorización y representatividad (Hernandez Sampieri, 2006).

En la **Tabla 9** se presenta el resumen de las muestras elaboradas para cada ensayo.

Tabla 9. Cantidad muestras para ensayos

		Ensayos conc	creto permeable	;	
Descripción	Resistencia a compresión	Resistencia a Flexión	Cantabro	Permeabilidad	Infiltración
CP-0% AF	6	3	4	3	1
CP-11% AF	6	3	4	3	1
CP-12% AF	6	3	4	3	1
CP-13% AF	6	3	4	3	1
CP-14% AF	6	3	4	3	1
CP-15% AF	6	3	4	3	1
Total	36	18	24	18	6

^{*}CP=Concreto permeable, AF= Agregado fino

4.5. Técnicas de recolección de datos

De acuerdo con el planteamiento de la presente investigación y el método implementado (hipótesis y variables), la investigación deberá presentar los siguientes requisitos, confiabilidad, validez y objetividad, para ello se utilizarán las siguientes técnicas para la recolección de datos:

- Observación
- Pruebas estandarizadas y fichas de laboratorio
- Datos secundarios (recolectados por otros investigadores)
- Análisis de datos
- Instrumentos mecánicos o electrónicos debidamente calibrados
- Instrumentos y procedimientos especificados para cada ensayo

4.5.1. Instrumentos de investigación

Se debe indicar que, para la elaboración de la presente investigación, se utilizarán los formatos de pruebas elaborados para ensayos en laboratorio. Dichos documentos se conforman bajo formatos estandarizados, en cumplimiento de las normas del ACI, NTP y MTC, además de otras normas que se crean convenientes.

Gracias a esto se podrá tener una visión clara y precisa de los resultados obtenidos en los ensayos, garantizando la fiabilidad y validación del trabajo.

La utilización de formatos estandarizados permite que los datos sean más accesibles y comprensibles, lo que facilitará el análisis y la comparación de resultados en futuras investigaciones.

4.6. Enfoque del Estudio

Los resultados obtenidos en los ensayos de laboratorio sobre especímenes de concreto en el diseño serán expresados de manera numérica y porcentual. Estos resultados son analizados con estadística descriptiva. es por ello que la investigación toma un enfoque cuantitativo-deductivo, con una orientación aplicada.

En este sentido, Hernández et al., (2014) aclara que "el enfoque cuantitativo se basa en la aplicación de métodos cuantitativos para medir y analizar datos numéricos, con el objetivo de evaluar la relación entre variables o probar hipótesis previamente establecidas" (p. 6). Por lo general, se requiere de una cantidad significativa de datos para poder realizar análisis matemáticos y estadísticos que permitan interpretar y comprender los fenómenos que se estudian. Es por ello que uno de los principales beneficios del enfoque cuantitativo es que permite obtener resultados precisos y objetivos que se basan en datos cuantificables.

4.7. Análisis e Interpretación de la Información

En el análisis e interpretación de los datos se tomarán en cuenta los criterios recomendados por el reporte ACI 522R-10, como la selección y caracterización de materiales, relación agua/cemento y porcentaje de poros. Todo ello teniendo en cuenta las propiedades mecánicas (resistencia a compresión y flexión) y permeabilidad, para que el concreto permeable diseñado cumpla los requisitos establecidos por el reporte ACI 522R-10 y por tanto pueda ser utilizado para el diseño de pavimentos de bajo volumen de tránsito, con los cuales se obtienen respuestas precisas y claras para el problema planteado.

En primer lugar, con los datos obtenidos de los ensayos a los agregados de las 5 diferentes canteras, se realizarán gráficos y cuadros, que permitan representar visualmente los resultados, luego de ello se seleccionara el agregado con las propiedades más adecuadas para la elaboración del concreto permeable.

En segundo lugar, se realizará el diseño de mezcla del concreto permeable con el agregado obtenidos en el paso anterior, variando el porcentaje de agregado fino que se adicionará a la mezcla, con estos diseños se procederán a realizarse muestras del concreto permeable, que serán sometidas a ensayos de resistencia mecánica y propiedades hidráulicas, los datos que se obtendrán en el laboratorio a través de las muestras serán procesados y analizados mediante tablas y gráficas. Con dicho análisis se evaluará la evolución de la resistencia a la compresión y la flexión tomando en cuenta las propiedades hidráulicas del concreto permeable (permeabilidad).

En lo referente a las propiedades hidráulicas del concreto permeable se realizarán muestras (losas de 1 m x 1 m) que serán sometidas a ensayos de infiltración del agua, adicionalmente se elaborarán muestras de concreto permeable sometidas al ensayo de abrasión Los Angeles (cantabro), así como, muestras para el

ensayo de permeabilidad empleando el permeámetro para medir el coeficiente de permeabilidad K. Con todos estos datos obtenidos se realizarán gráficos que nos permitan comparar y elegir la mejor mezcla de concreto hidráulico permeable aplicable a pavimentos rígidos urbanos, todo esto con el objeto de garantizar la aplicación del concreto permeable en pavimentos con bajo volumen de tránsito.

Se debe destacar que, los resultados obtenidos tras realizar los ensayos de materiales serán registrados y procesados en el software procesador de datos y gráficos, que permitirá la creación de tablas y gráficos que faciliten la visualización y análisis de los datos. De esta manera, se podrá presentar de forma clara y concisa la información obtenida, además se generará una base de datos que puede ser utilizada para futuros estudios. Esta base de datos será de gran utilidad para informar y guiar en la toma de decisiones en la selección de materiales a utilizar en proyectos posteriores referidos al concreto permeable en el diseño de pavimentos de bajo volumen de tránsito.

4.8. Operacionalización de las Variables

La operacionalización de la variable dependiente e independiente se muestra en la **Tabla 10**.

Tabla 10. Operacionalización de variables

Variables	Dimensión	Indicador	Unidad	Rango valores
Independiente				
Porcentaje de agregado fino	Contenido de agregado fino en la mezcla	Procentaje en peso del agregado fino respecto a la mezcla total	%	11% - 15%
Dependiente				
		Ensayo para el análisis granulométrico de los agregados	Huso granulométrico	Huso 6, 67, 7
Mezcla de concreto hidráulico permeable	Propiedades físico mecánicas del agregado fino	Ensayo para la determinación de la gravedad específica y absorción del agregado fino	gr/cm³, %	2,5-3,0 gr/cm³; 0,1%-5%
		Método de ensayo normalizado para contenido de húmedad	%	0,2%-4%
		Ensayo para la determinación del peso unitario del agregado	kg/m³	1600 kg/m³-1800 kg/m³

CAPÍTULO V: RESULTADOS DE LA INVESTIGACIÓN

5.1. Estudio de Cantera

5.1.1. Cantera del Agregado fino

5.1.1.1. Cantera de Cunyac.- En la Figura 6 se observa la ubicación de la cantera de Cunyac.

Figura 6. Ubicación de la cantera Cunyac, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 762513.24 m E Norte: 8499398.00 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde Cunyac hasta la Universidad Nacional de San Antonio Abad del Cusco, tomando la carretera longitudinal de la Sierra Sur, es de 99.8 kilómetros, según datos proporcionados por Google Maps.

- **Tiempo de viaje**: El tiempo estimado de viaje en automóvil es de aproximadamente 2 horas y 17 minutos, considerando las condiciones normales de tráfico y las características del terreno.
- Modo de acceso: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera en Cunyac es fácilmente
 adquirible en la ciudad de Cusco debido a su alta calidad y aceptación en el mercado local. El
 transporte del material desde la cantera es factible, facilitando su uso en diversos proyectos de
 construcción. La Tabla 11 resume la información:

Tabla 11. Características de la cantera "Cunyac"

	Estu	dio de canteras	
Agregado	Fino		
Cantera	Cunyac		
	Criterio		Unidad de medida
	etera a la ciudad del	99,8	Km
Cusco			
Tiempo de viaje		2,28	Hrs
Accesibilidad para la adquisición del		Accesible	
material en el luga	r		
Facilidad de transporte a la ciudad del		Factible	
Cusco		raction	
Comercialización del agregado en la		Muy comercial	
ciudad del Cusco		with conferent	

5.1.1.2. <u>Cantera de Machu Picchu</u>.- En la **Figura 7** se observa la ubicación de la cantera de Machupicchu.

Figura 7. Ubicación de la cantera Machupicchu, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 768410.32 m E Norte: 8544156.03 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde la estación de tren San Pedro hasta la Universidad Nacional de San Antonio Abad del Cusco, Facultad de Ingeniería Civil, es de 3.9 kilómetros, tomando la Avenida del Ejército. Desde la estación San Pedro hasta el pueblo de Aguas Calientes, la distancia aproximada es de 366 kilómetros, según datos proporcionados por Google Maps.

- **Tiempo de viaje**: El tiempo estimado de viaje en tren directo desde la estación San Pedro hasta Aguas Calientes es de aproximadamente 4 horas y 15 minutos, considerando las condiciones normales del servicio ferroviario.
- **Modo de acceso**: El acceso se realiza predominantemente mediante el uso de trenes, siendo este el medio más común para el transporte del material desde Machu Picchu.
- Accesibilidad y disponibilidad del material: El material de cantera en Machu Picchu es de difícil
 adquisición en la ciudad de Cusco debido a la distancia y los problemas sociales que afectan la
 región. No obstante, la calidad del material es excelente, aunque su transporte directo desde la
 cantera representa un desafío logístico considerable. La Tabla 12 resume la información:

Tabla 12. Características de la cantera "Machupicchu"

	Estud	io de canteras	
Agregado	Fino		
Cantera	Machu Picchu		
	Criterio		Unidad de medida
Distancia por via f	ferrea a la ciudad del	366	Km
Tiempo de viaje		4,25	Hrs
Accesibilidad para material en el luga	1	Poco Accesible	
Facilidad de transp Cusco	porte a la ciudad del	Poco Factible	
Comercialización o ciudad del Cusco	del agregado en la	Nula	

5.1.2. Cantera del Agregado grueso

5.1.2.1. Cantera de Huillque.- En la Figura 8 se observa la ubicación de la cantera de Huillque.

Figura 8. Ubicación de la cantera Huillque, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 774180.24 m E Norte: 8506276.26 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde Huillque (Limatambo) hasta la Universidad Nacional de San Antonio Abad del Cusco, tomando la carretera Longitudinal de la Sierra Sur, es de 83.4 kilómetros, según datos proporcionados por Google Maps.

- **Tiempo de viaje**: El tiempo estimado de viaje en automóvil es de aproximadamente 2 horas y 3 minutos, considerando las condiciones normales de tráfico y las características del terreno.
- **Modo de acceso**: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera en Huillque (Limatambo) es de difícil adquisición en la ciudad de Cusco debido a la distancia y las condiciones de la carretera, además de que, en la ciudad, se presentan opciones más viables de canteras más cercanas. No obstante, el transporte del material desde la cantera es factible, aunque representa un desafío logístico. La Tabla 13 resume la información.

Tabla 13. Características de la cantera "Huillque"

	Estud	io de canteras	
Agregado	Grueso		
Cantera	Huillque		
	Criterio		Unidad de medida
Distancia por carr Cusco	retera a la ciudad del	83,4	Km
Tiempo de viaje		2,05	Hrs
Accesibilidad para material en el luga	a la adquisición del ar	Accesible	
Facilidad de transporte a la ciudad del Cusco		Complicada	
Comercialización ciudad del Cusco	del agregado en la	Nula	

5.1.2.2. Cantera de Pisac.- En la Figura 9 se observa la ubicación de la cantera de Pisac.

Figura 9. Ubicación de la cantera Pisac, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 192544.56 m E Norte: 8513096.54 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde Pisac hasta la Universidad Nacional de San Antonio Abad del Cusco, tomando la carretera Longitudinal de la Sierra Sur, es de 35.2 kilómetros, según datos proporcionados por Google Maps.

- **Tiempo de viaje**: El tiempo estimado de viaje en automóvil es de aproximadamente 51 minutos, considerando las condiciones normales de tráfico y las características del terreno.
- Modo de acceso: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera en Pisac es fácilmente adquirible en la ciudad de Cusco. El transporte directo del material desde la cantera también es factible, proporcionando una opción viable para diversos proyectos de construcción. La Tabla 14 resume la información

Tabla 14. Características de la cantera "Pisac"

	Estuc	lio de canteras	
Agregado	Grueso		
Cantera	Pisac		
	Criterio		Unidad de medida
Distancia por carr	etera a la ciudad del	35,2	Km
Cusco			
Tiempo de viaje		0,85	Hrs
Accesibilidad para material en el luga	a la adquisición del r	Accesible	
Facilidad de transporte a la ciudad del		Factible	
Cusco			
Comercialización ciudad del Cusco	del agregado en la	Muy comercial	

5.1.2.3. <u>Cantera de Quiquijana</u>. - En la **Figura 10** se observa la ubicación de la cantera de Quiquijana.

Figura 10. Ubicación de la cantera de Quiquijana, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 811097.92 m E Norte: 8513451.16 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde la cantera de Quiquijana hasta la Universidad Nacional de San Antonio Abad del Cusco, tomando la carretera Longitudinal de la Sierra Sur, es de 32.8 kilómetros, según datos proporcionados por Google Maps.

- **Tiempo de viaje:** El tiempo estimado de viaje en automóvil es de aproximadamente 1 hora y 2 minutos, considerando las condiciones normales de tráfico y las características del terreno.
- Modo de acceso: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera en Quiquijana se comercializa mayoritariamente en la zona local. No obstante, el transporte del material hacia la ciudad de Cusco

es factible, sin embargo, es importante recalcar la poca comercialización del material de esta cantera en la ciudad del Cusco. La **Tabla 15** resume la información.

Tabla 15. Características de la cantera "Quiquijana"

	Estuc	dio de canteras	
Agregado	Grueso		
Cantera	Quiquijana		
	Criterio		Unidad de medida
Distancia por car	rretera a la ciudad del	32,8	Km
Cusco		32,0	Kili
Tiempo de viaje		1,03	Hrs
Accesibilidad para la adquisición del		Accesible	
material en el lug	gar	Accesioic	
Facilidad de transporte a la ciudad del		Factible	
Cusco		ractioic	
Comercialización del agregado en la		Poco comercial	
ciudad del Cusco)	r oco comerciai	

5.1.2.4. <u>Cantera de Vicho</u>.- En la **Figura 11** se observa la ubicación de la cantera Vicho.

Figura 11. Ubicación de la cantera Vicho, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 203967.52 m E Norte: 8500748.59 m S

Distancia por carretera hasta la Universidad Nacional de San Antonio Abad del Cusco: La distancia aproximada desde Vicho hasta la Universidad Nacional de San Antonio Abad del Cusco, tomando la carretera Cusco - Paucartambo, es de 39.8 kilómetros, según datos proporcionados por Google Maps.

• **Tiempo de viaje:** El tiempo estimado de viaje en automóvil es de aproximadamente 59 minutos, considerando las condiciones normales de tráfico y las características del terreno.

- Modo de acceso: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera en Vicho es fácilmente adquirible en la ciudad de Cusco. El transporte directo del material desde la cantera es posible, facilitando su uso en diversos proyectos de construcción. La Tabla 16 resume la información

Tabla 16. Características de la cantera "Vicho"

	Estud	dio de canteras	
Agregado	Grueso		
Cantera	Vicho		
	Criterio		Unidad de medida
	etera a la ciudad del	39,8	Km
Cusco		0,98	Hrs
Tiempo de viaje		0,96	1115
Accesibilidad para la adquisición del material en el lugar		Accesible	
Facilidad de transporte a la ciudad del		Factible	
Cusco			
Comercialización del agregado en la		Muy comercial	
ciudad del Cusco	udad del Cusco		

5.1.2.5. <u>Cantera de Zurite</u>.- En la **Figura 12** se observa la ubicación de la cantera de Zurite.

Figura 12. Ubicación de la cantera de Zurite, vista satelital

Fuente: Google Earth

Coordenadas UTM:

Este: 796247.00 m E Norte: 8511827.00 m S

Distancia por carretera: La distancia aproximada desde la Universidad Nacional de San Antonio Abad del Cusco hasta las canteras a través de la carretera Longitudinal de la Sierra Sur es de 45.2 kilómetros, según datos obtenidos de Google Maps.

- **Tiempo de viaje**: El tiempo estimado de viaje en automóvil es de aproximadamente 1 hora y 19 minutos, considerando las condiciones normales de tráfico y las características del terreno.
- Modo de acceso: El acceso se realiza predominantemente mediante el uso de vehículos automotores, siendo el automóvil el medio más común para el transporte del material.
- Accesibilidad y disponibilidad del material: El material de cantera, debido a su baja resistencia, es comercializado principalmente en la región circundante. No obstante, el transporte del material hacia la ciudad de Cusco es viable y se realiza frecuentemente, facilitando su utilización en diversos proyectos de construcción dentro de la ciudad. La Tabla 17 resume la información.

Tabla 17. Características de la cantera "Zurite"

	Estuc	dio de canteras	
Agregado	Grueso		
Cantera	Zurite		
	Criterio		Unidad de medida
Distancia por car	retera a la ciudad del	45,2	Km
Cusco			
Tiempo de viaje		1,21	Hrs
Accesibilidad para la adquisición del		Accesible	
material en el lugar		11000000	
Facilidad de transporte a la ciudad del		Factible	
Cusco		Tuetiole	
Comercialización del agregado en la		Poco comercial	
ciudad del Cusco	1	1 oco comerciai	

5.2. Agregado fino

5.2.1. Agregado fino – cantera "Cunyac"

En la **Tabla 18** se muestran las propiedades obtenidas del agregado fino proveniente de la cantera "Cunyac".

Tabla 18. Agregado fino "Cunyac"

Datos generales	
Tamaño máximo nominal (pulg)	3/8"
Huso	67
Gravedad especifica (gr/cm3)	2,41
Porcentaje de absorción (%)	2,72
Peso unitario suelto (kg/m3)	1690,48
Peso unitario compactado (kg/m3)	1857,14
Contenido de humedad (%)	1,77
Material fino que pasa el tamiz N° 200 (%)	0,71

El agregado de la Cantera "Cunyac" presenta un tamaño de partícula adecuado de 3/8", además su uso es el 67, por dicho motivo no es necesario compensar las cantidades con otro material proveniente de otra cantera. El contenido de humedad es del 1.77% indica un material húmedo, y el porcentaje de material

fino que pasa por el tamiz N° 200 es del 0.71%, lo cual indica un material con poco material deletéreo. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia.

5.2.2. Agregado fino - cantera "Machu Picchu"

En la **Tabla 19** se muestran las propiedades obtenidas del agregado fino proveniente de la cantera "Cunyac".

Tabla 19. Agregado fino "Machu Picchu"

Datos generales			
Tamaño máximo nominal (pulg)	3/8"		
Huso	67		
Gravedad especifica (gr/cm3)	1,2		
Porcentaje de absorción (%)	2,59		
Peso unitario suelto (kg/m3)	1642,48		
Peso unitario compactado (kg/m3)	1750		
Contenido de humedad (%)	1,67		
Material fino que pasa el tamiz N° 200 (%)	0,87		

El agregado de la Cantera "Machu Picchu" presenta un tamaño de partícula adecuado de 3/8", además su uso es el 67, por dicho motivo no es necesario compensar las cantidades con otro material proveniente de otra cantera. El contenido de humedad es del 1.67% indica un material húmedo, y el porcentaje de material fino que pasa por el tamiz N° 200 es del 0.87%, lo cual indica un material con poco material deletéreo. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia.

5.3. Propiedades del agregado grueso

Las propiedades del agregado provenientes de las diferentes canteras se presentan a continuación. Las fichas de laboratorio, incluidas en el anexo de la presente investigación, muestran de manera más detallada los procedimientos y otras características consideradas en los ensayos de laboratorio.

5.3.1. Cantera "Huillque"

En la **Tabla 20** se muestran las propiedades obtenidas del agregado grueso proveniente de la cantera "Huillque".

Tabla 20. Agregado grueso "Huillque"

Datos generales	
Tamaño maximo nominal (pulg.)	1/2"
Peso específico (gr/cm³)	2,58
Porcentaje de absorción (%)	1,83
Peso unitario suelto (kg/m³)	1392,86
Peso unitario compactado (kg/m³)	1619,05
Vacios en el agregado	0,4
Contenido de humedad (%)	0,88
porcetaje de pérdida abrasión (%)	23,35
Material fino que pasa el tamiz N° 200 (%)	1,49

El agregado de la Cantera "Huillque" presenta un tamaño de partícula adecuado de ½". El porcentaje de pérdida por abrasión (23,35%) indicaría que este agregado es el ideal para una buena resistencia del concreto. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia.

5.3.2. Cantera "Pisac"

En la **Tabla 21** se muestran las propiedades obtenidas del agregado grueso proveniente de la cantera "Pisac".

Tabla 21. Agregado grueso "Pisac"

Datos generales				
Tamaño maximo nominal (pulg.)	1/2"			
Peso específico (gr/cm³)	2,59			
Porcentaje de absorción (%)	1,26			
Peso unitario suelto (kg/m³)	1416,67			
Peso unitario compactado (kg/m³)	1583,33			
Vacios en el agregado	0,41			
Contenido de humedad (%)	0,24			
porcetaje de pérdida abrasión (%)	27,34			
Material fino que pasa el tamiz N° 200 (%)	0,87			

El agregado de la Cantera "Pisac" presenta un tamaño de partícula adecuado de ½". El porcentaje de pérdida por abrasión (27,34%) indicaría que este agregado le daría una buena resistencia del concreto. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia. Además, su bajo contenido de humedad no afectaría a la mezcla de concreto permeable al momento de realizar el vaciado, ya que no alteraría la cantidad de agua en la mezcla, evitando la necesidad de correcciones por humedad.

5.3.3. Cantera "Quiquijana"

En la **Tabla 22** se muestran las propiedades obtenidas del agregado grueso proveniente de la cantera "Quiquijana".

Tabla 22. Agregado grueso "Quiquijana"

Datos generales				
Tamaño maximo nominal (pulg.)	1/2"			
Peso específico (gr/cm³)	2,53			
Porcentaje de absorción (%)	2,11			
Peso unitario suelto (kg/m³)	1642,86			
Peso unitario compactado (kg/m³)	1666,67			
Vacios en el agregado	0,37			
Contenido de humedad (%)	1,7			
porcetaje de pérdida abrasión (%)	31,1			
Material fino que pasa el tamiz N° 200 (%)	3,75			

El agregado de la Cantera "Quiquijana" presenta un tamaño de partícula adecuado de ½". El porcentaje de pérdida por abrasión (31,1%) indicaría que este agregado no daría una buena resistencia al concreto. Por lo tanto, se puede decir que este agregado no es adecuado para aplicaciones de concreto permeable donde se requiera resistencia. Además que presente gran cantidad de material fino que pasa el tamiz N° 200.

5.3.4. Cantera "Vicho"

En la **Tabla 23** se muestran las propiedades obtenidas del agregado grueso proveniente de la cantera "Vicho".

Tabla 23. Agregado grueso "Vicho"

Datos generales				
Tamaño maximo nominal (pulg.)	1/2"			
Peso específico (gr/cm³)	2,54			
Porcentaje de absorción (%)	1,24			
Peso unitario suelto (kg/m³)	1511,9			
Peso unitario compactado (kg/m³)	1654,76			
Vacios en el agregado	0,37			
Contenido de humedad (%)	0,3			
porcetaje de pérdida abrasión (%)	27,41			
Material fino que pasa el tamiz N° 200 (%)	0,94			

El agregado de la Cantera "vicho" presenta un tamaño de partícula adecuado de ½". El porcentaje de pérdida por abrasión (27,41%) indicaría que este agregado le daría una buena resistencia del concreto. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia. Además, su bajo contenido de humedad no afectaría a la mezcla de

concreto permeable al momento de realizar el vaciado, ya que no alteraría la cantidad de agua en la mezcla, evitando la necesidad de correcciones por humedad.

5.3.5. Cantera "Zurite"

En la **Tabla 24** se muestran las propiedades obtenidas del agregado grueso proveniente de la cantera "Zurite".

Tabla 24. Agregado grueso "Zurite"

Datos generales				
Tamaño maximo nominal (pulg.)	1/2"			
Peso específico (gr/cm³)	2,55			
Porcentaje de absorción (%)	2,49			
Peso unitario suelto (kg/m³)	1392,86			
Peso unitario compactado (kg/m³)	1642,86			
Vacios en el agregado	0,39			
Contenido de humedad (%)	1,09			
porcetaje de pérdida abrasión (%)	28,9			
Material fino que pasa el tamiz N° 200 (%)	2,82			

El agregado de la Cantera "Zurite" presenta un tamaño de partícula adecuado de ½". El porcentaje de pérdida por abrasión (28,9%) indicaría que este agregado le daría una buena resistencia del concreto. Por lo tanto, es adecuado para aplicaciones de concreto permeable donde se requiere un equilibrio entre tamaño del agregado y resistencia.

5.4. Diseño de mezcla

La mezcla de concreto permeable según el reporte del ACI 522 se debe realizar mediante el método b/b_0 o diseño por volúmenes absolutos. Se muestran los resultados del diseño de mezcla correspondiente a la mezcla de concreto permeable con 0% de agregado fino fijo añadido a la mezcla, y los correspondientes diseños de mezcla con porcentajes de agregado fino fijo añadidos de 10%, 11%, 12%, 13%, 14%, y 15%.

Los agregados provenientes de las canteras de Pisac y Cunyac son seleccionados para elaborar la mezcla de concreto permeable tomando en cuenta su mayor resistencia a la abrasión y resistencia al ataque de sulfatos comparado a los demás agregados estudiados. Las propiedades de los agregados, cemento y agua empleados en el diseño de mezcla se observan en la **Tabla 25**.

Tabla 25. Propiedades de los materiales

Descripción	Agregado grueso cantera -	Cemento IP	Agua		
	Pisac Cunyac				
Peso especifico (kg/m³)	2587	2572	2850	1000	
Peso unitario compactado (kg/m³)	1583,33	~	~	~	
Absorción (%)	1,26	2,41	~	~	
Humedad (%)	0,24	1,43	~	~	

5.4.1. Consistencia

En la **Tabla 26**, se muestran los resultados de consistencia del concreto permeable en estado fresco, determinada a partir del ensayo de revenimiento realizado al momento del vaciado de las muestras del concreto permeable con una relación agua-cemento de la mezcla igual a 0,38.

Tabla 26. Consistencia de la mezcla

	Resultados consistencia del concreto permeable					
Diseño de mezcla	Slump (pulg)	Slump (cm)	variación (%)	consistencia		
Concreto permeable patrón (0% Agr. Fino)	0,13	0,32	~	seca		
Concreto permeable (11% Agr. Fino)	0,22	0,55	72%	seca		
Concreto permeable (12% Agr. Fino)	0,24	0,61	91%	seca		
Concreto permeable (13% Agr. Fino)	0,26	0,65	103%	seca		
Concreto permeable (14% Agr. Fino)	0,29	0,74	131%	seca		
Concreto permeable (15% Agr. Fino)	0,29	0,74	131%	seca		

En la **Tabla 26** se observa que el revenimiento (o slump) del concreto permeable aumenta progresivamente a medida que se añade más agregado fino a la mezcla, alcanzando un valor máximo de 0.74 cm. A pesar de este incremento, es importante destacar que la mezcla sigue considerándose seca.

5.4.2. Proporciones

En la **Tabla 27** se muestran los resultados de las proporciones obtenidas para el diseño de mezcla de concreto permeable para un volumen de 1 m³ de mezcla. Los cálculos del diseño de mezcla se encuentran con mayor detalle en los anexos.

Tabla 27. Proporción en peso materiales

Diseño de mezcla	Agregado grueso	Agregado fino (kg)	Cemento (kg)	Agua (lt)	Contenido vacios (m³)
Concreto permeable patrón (0% Agreg. fino)	1110,99	0	424,15	172,48	0,26
Concreto permeable (11% agreg. fino)	1110,99	286,96	424,15	175,25	0,15
Concreto permeable (12% agreg. fino)	1110,99	313,05	424,15	175,5	0,14
Concreto permeable (13% agreg. fino)	1110,99	339,14	424,15	175,76	0,13
Concreto permeable (14% agreg. fino)	1110,99	365,23	424,15	176,01	0,12
Concreto permeable (15% agreg. fino)	1110,99	391,32	424,15	176,26	0,11

En los resultados presentados en la **Tabla 27**, se puede observar que el agregado grueso y el cemento se mantienen constantes con un valor de 1110.99 kg y 424,15 kg respectivamente. La variación del agregado fino indica el porcentaje en volumen que este ocupa en la mezcla, y mediante su densidad se determina la cantidad en peso que debe añadirse. Asimismo, se registra la cantidad de agua necesaria para la mezcla, cuya variación se atribuye a la humedad del agregado fino y las correcciones por humedad. Además, se observa que los vacíos en la mezcla de concreto permeable patrón comienzan con un volumen de 0.26 m³,

y a medida que se incrementa el agregado fino, los vacíos se van reduciendo hasta alcanzar un volumen de 0.11 m³.

5.5. Propiedades mecánicas

5.5.1. Resistencia a compresión

En la **Tabla 28** se muestran los resultados obtenidos de los ensayos de resistencia a compresión del concreto permeable realizadas sobre muestras cilíndricas con 0%, 11%, 12%, 13%, 14% y 15%. Los resultados de la resistencia a compresión son el resultado del promedio obtenido al ensayar 6 muestras cilíndricas. Las muestras se elaboraron con la misma tanda de vaciado para cada diseño de mezcla correspondiente al 0%, 11%, 12%, 13%, 14% y 15% cantidad de agregado fino añadido a la mezcla.

Tabla 28. Valores resistencia a compresión

RESISTENCIA A COMPRESION					
DISEÑO	IDENTIFICACION	Resistencia a compresión f'c (kgf/cm²)	Promedio f'c (kgf/cm²)		
	M-01	101,9			
	M-02	123,8			
0%	M-03	70,3	100.2		
AGREGADO FINO	M-04	105,3	100,2		
FINO	M-05	109,6			
	M-06	90			
	AM-01	44,3			
	AM-02	44,3			
11%	AM-03	120,7	102.0		
AGREGADO FINO	AM-04	144,2	103,8		
FINO	AM-05	107,4			
	AM-06	162,1			
	BM-01	112,4			
	BM-02	106,1			
12% AGREGADO FINO	BM-03	114,1	120.4		
	BM-04	138,4	120,4		
FINO	BM-05	145,2			
	BM-06	106			
	CM-01	132,1			
	CM-02	152,4			
13% AGREGADO	CM-03	107,1	122.4		
FINO	CM-04	125,2	123,4		
1110	CM-05	107			
	CM-06	116,8			
	DM-01	118			
	DM-02	230,3			
14% AGREGADO	DM-03	159,4	155.0		
FINO	DM-04	166,8	155,0		
1110	DM-05	169,9			
	DM-06	85,7			
	EM-01	167,6			
	EM-02	162,1			
15% AGREGADO	EM-03	241,3	186,6		
FINO	EM-04	184,7	180,0		
1110	EM-05	191,3			
	EM-06	172,8			

En la **Tabla 28** se muestran los valores de resistencia a compresión del concreto permeable, con diferentes porcentajes de agregado fino. El concreto permeable patrón obtuvo una resistencia a compresión de 100,2 kgf/cm². Se aprecia un aumento significativo en la resistencia a compresión a partir del 12% de

agregado fino añadido a la mezcla, y el valor más alto de resistencia a compresión es la mezcla con 15% de agregado fino alcanzando el valor de 186.6 kgf/cm².

5.5.2. Resistencia a flexión

Los resultados obtenidos de la resistencia a flexión de las vigas obtenidas a partir de la aplicación de carga en el tercio central de la viga se presentan en la **Tabla 29**. Los ensayos fueron realizados a los 28 días de edad, el promedio de tres muestras ensayadas sirve para obtener el MR de cada diseño de mezcla con la incorporación del agregado fino en porcentajes del 0%, 11%, 12%, 13%, 14% y 15% respectivamente.

Tabla 29. Valores resistencia a flexión

Diseño de mezcla	Resitencia a flexión (kgf/cm²)
CP Patrón	10,94 kgf/cm ²
<i>CP+11%AF</i>	11,95 kgf/cm ²
CP+12% AF	12,90 kgf/cm ²
CP+13% AF	21,34 kgf/cm ²
CP+14% AF	24,90 kgf/cm ²
CP+15% AF	29,99 kgf/cm ²

En la **Tabla 29** se muestran los valores obtenidos para la resistencia a flexión del concreto permeable, con diferentes porcentajes de agregado fino. El concreto permeable patrón obtuvo una resistencia a flexión de 10,94 kgf/cm². Se aprecia un aumento significativo en la resistencia a flexión a partir del 13% de agregado fino añadido a la mezcla, y el valor más alto de resistencia a flexión es la mezcla CP+15% AF con 29,99 kgf/cm².

5.5.3. Perdida al desgaste o cántabro

En la siguiente **Tabla 30** se presentan los resultados obtenidos de los ensayos de perdida al desgaste o cántabro del concreto permeable realizadas sobre muestras cilíndricas. Las muestras se laboraron con la misma tanda de vaciado para cada diseño de mezcla correspondiente al 11%, 12%, 13%, 14% y 15% cantidad de agregado fino adicionado a la mezcla.

Tabla 30. Perdida por desgaste

Ensayo	Ensayo de Perdida al desgaste o cantabro					
Diseño	Promedio porcentaje de desgaste					
11%	69,78					
12%	61,17					
13%	58,93					
14%	55,61					
15%	33,73					

Con estos resultados, se puede observar que, a mayor cantidad de agregado fino usado en el concreto permeable, el porcentaje de desgaste baja.

5.6. Propiedades hidráulicas

5.6.1. Ensayo de permeabilidad

En la **Tabla** 31 se presenta los resultados obtenidos de los ensayos de permeabilidad del concreto permeable realizadas sobre muestras cilíndricas. Las muestras se laboraron con la misma tanda de vaciado para cada diseño de mezcla con 0%, 11%, 12%, 13%, 14% y 15% cantidad de agregado fino añadido a la mezcla.

Tabla 31. Permeabildad

ENSAYO DE PERMEABILIDAD							
Descripción		Diseño 0	Diseño A (11%)	Diseño B (12%)	Diseño C (13%)	Diseño D (14%)) Diseño E (15%)
(A) Diametro de la muestra (cm)		10,00	10,00	10,00	10,00	10,00	10,00
(B) Longitud de la muestra (cm)		20,00	20,00	20,00	20,00	20,00	20,00
(C) Tiempo de paso (s)		12,00	13,00	14,00	15,70	20,00	29,20
(D) Área del tubo (cm^2)		78,54	78,54	78,54	78,54	78,54	78,54
(E) Área de la muestra (cm^2)	A^2*PI/4	78,54	78,54	78,54	78,54	78,54	78,54
(F) Nivel de agua h2 (cm)		10,00	10,00	10,00	10,00	10,00	10,00
(G) Nivel de agua h1 (cm)		19,00	19,00	19,00	19,00	19,00	19,00
Permeabilidad (K) (cm/s)	(E/G)*(B/C)*Ln(G/F)	1,07	0,99	0,92	0,82	0,64	0,44

5.6.2. Ensayo de infiltración

En la **Tabla 32** se presenta los resultados obtenidos de los ensayos de infiltración del concreto permeable realizadas sobre losas de 1m x 1m. Las muestras se laboraron con la misma tanda de vaciado para cada diseño de mezcla con 0%, 11%, 12%, 13%, 14% y 15% cantidad de agregado fino añadido a la mezcla.

Tabla 32. Infiltración

ENSAYO DE INFILTRACIÓN							
Descripción		Diseño 0	Diseño A (11%)	Diseño B (12%)	Diseño C (13%)	Diseño D (14%)	Diseño E (15%)
(A) Diametro del anillo mm		301,00	301,00	301,00	301,00	301,00	301,00
(B) Factor K		4583666000,00	4583666000,00	4583666000,00	4583666000,00	4583666000,00	4583666000,00
(C) Pre Humectación (Lt)		3,60	3,60	3,60	3,60	3,60	3,60
(D) Tiempo pre humectación (s)		23,00	23,60	35,40	40,80	42,50	35,20
(E) Volumen de ensayo (Lt)		18,00	18,00	18,00	18,00	18,00	18,00
(F) Tiempo Ensayo		15,00	30,70	34,60	38,60	46,50	59,20
(G) Infitración (mm/h)	B*E/(A^2*F)	60710,14	29662,93	26319,42	23592,02	19583,92	15382,64
Infiltración (mm/s)	G/3600	16,86	8,24	7,31	6,55	5,44	4,27

5.7. Estudio hidrológico

En este estudio, se empleó la información meteorológica brindada por la estación meteorológica de Perayoc, que se encuentra ubicada en la Universidad nacional de San Antonio Abad del Cusco. Para ello tomaremos los datos de precipitación.

5.7.1. Precipitación

Las precipitaciones registradas en la región de Cusco, son de origen orográfico y resaltan por ser de intensidad fuerte. Las mismas presentan sus mayores intensidades en los meses de noviembre a marzo, y las menores intensidades, en época de estiaje, de Mayo a Septiembre.

La extensión de los registros históricos de la estación lleva desde el año 1961, sin embargo, para este estudio, se tomarán en cuenta los últimas 30 años, siendo este periodo adecuado para efectuar un estudio adecuado.

Tabla 33. Registro de precipitación Mensual Estación meteorológica de Perayoc

REGISTRO METEREOLOGICA ESTACIÓN PERAYOC													
MESES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	TOTAL
1994	196,40	220,90	232,60	60,50	15,20	0,00	0,00	21,00	0,00	44,50	64,20	165,00	1.020,30
1995	127,00	90,60	137,80	26,10	1,70	0,30	3,10	0,00	52,00	20,10	27,50	124,00	610,20
1996	169,00	87,40	48,60	28,90	9,70	0,60	0,00	9,80	16,00	61,20	66,00	168,00	665,20
1997	137,20	105,10	145,40	75,30	3,20	0,00	0,00	11,10	13,40	35,50	126,00	178,70	830,90
1998	155,30	163,20	54,30	34,80	3,80	3,40	0,00	6,20	2,20	84,90	70,60	69,40	648,10
1999	165,00	96,70	104,00	50,70	10,20	6,00	0,00	0,00	57,90	24,80	52,70	119,20	687,20
2000	234,90	117,10	113,10	9,40	1,80	3,50	2,40	6,70	24,60	53,00	53,80	90,70	711,00
2001	295,00	155,40	156,10	34,20	5,90	0,00	22,40	11,90	19,20	70,50	66,90	102,90	940,40
2002	184,90	179,80	203,70	25,40	6,90	2,20	32,50	6,00	14,40	73,80	113,00	129,30	971,90
2003	216,60	156,90	145,40	95,30	2,80	7,10	0,00	13,10	9,80	23,50	126,00	127,80	924,30
2004	203,00	149,00	89,50	30,40	3,40	20,60	9,60	10,00	32,70	83,70	155,10	94,20	881,20
2005	118,80	122,40	108,50	35,70	1,10	0,00	1,00	3,10	6,50	36,90	66,60	57,80	558,40
2006	196,30	122,30	126,50	73,90	0.0	6,80	0.0	5,50	18,60	77,80	67,40	165,70	860,80
2007	139,50	86,90	113,50	68,60	13,00	0,00	4,00	0,80	6,10	74,30	103,80	77,70	688,20
2008	130,80	138,00	80,80	5,30	6,50	2,50	3,10	6,70	136,40	120,20	54,90	128,80	814,00
2009	122,30	117,30	55,30	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	129,90	424,80
2010	339,10	213,30	166,30	25,40	6,60	0,00	45,30	10,60	7,20	84,10	49,50	244,10	1.191,5
2011	98,70	245,20	180,70	66,70	0,50	0,69	4,50	0,00	34,50	25,80	77,67	62,80	797,76
2012	59,40	118,80	70,20	51,40	3,80	3,60	0,20	1,40	14,40	16,80	107,40	178,40	625,80
2013	160,61	128,90	112,50	29,20	8,10	12,20	2,50	17,30	19,70	120,00	94,22	199,80	905,03
2014	117,40	75,40	49,70	64,10	19,30	0,00	2,60	12,80	17,60	79,00	17,60	170,90	626,40
2015	165,70	145,00	86,80	70,18	20,60	4,40	9,10	12,10	28,80	20,40	70,10	157,40	790,58
2016	100,10	182,70	59,20	45,70	11,20	0,20	9,70	1,30	22,60	77,40	33,60	93,10	636,80
2017	126,20	133,80	176,00	48,50	22,50	5,80	1,30	11,40	17,60	60,50	67,70	125,60	796,90
2018	172,20	174,40	160,50	33,70	3,00	16,30	16,30	14,60	18,20	77,60	74,20	80,30	841,30
2019	113,70	123,50	133,50	25,70	22,60	4,10	4,20	0,00	5,60	66,20	137,50	210,25	846,85
2020	208,95	150,67	89,25	34,24	3,51	15,83	29,75	1,83	0,56	11,54	103,87	149,57	799,56
2021	84,38	156,36	66,62	44,50	5,06	2,05	0,61	13,83	26,79	39,77	109,64	81,30	630,90
2022	194,20	147,00	159,40	12,60	0,00	0,00	0,00	2,80	5,00	12,70	21,00	53,80	608,50
2023	47,00	94,60	78,80	55,60	22,20	0.00	0,00	7,10	20,10	23,00	52,10	146,60	547,10

Fuente: Estación Meteorológica de Perayoc

Hidrograma anual 1,400,00 1,200,00 Precipitación mensual acumulada 1,000,00 800,00 600,00 400,00 200,00 0,00 2008 2009 2012 2013 2014 2015 2015 2016 2003 2004 2002 2010 2007 Año de Registro

Tabla 34. Hidrograma anual Estación meteorológica de Perayoc

Fuente: Estación Meteorológica de Perayoc

5.7.2. Intensidad

Este parámetro nos indica la cantidad de agua que cae en un área específica, durante un tiempo determinado. Se mide en longitud sobre tiempo o longitud sobre área sobre tiempo.

La intensidad está determinada por la siguiente fórmula:

$$I_m = \frac{P}{t}$$

Donde:

Im = Intensidad máxima (mm/hr)

P = Precipitación en altura de agua

t = Tiempo en Horas

5.7.3. Duración

Se refiere al tiempo total en que ocurre un evento de precipitación o una tormenta. Este factor es fundamental para entender el impacto y las características de la tormenta, ya que afecta la cantidad total de lluvia que se acumula y cómo esta influye en la cuenca hidrográfica o el área analizada.

La duración de una tormenta puede variar ampliamente, desde unos minutos hasta varios días, y su análisis es crucial para prever posibles inundaciones, calcular el escurrimiento superficial y diseñar infraestructuras hidráulicas, como presas, alcantarillas y sistemas de drenaje.

5.7.4. Frecuencia

Se refiere a la probabilidad de que un evento hidrológico, como una lluvia intensa, una inundación o una sequía, se presente en un período de tiempo determinado.

Este concepto es crucial para la gestión de riesgos hidrológicos, la planificación de infraestructuras y la administración de recursos hídricos, ya que permite diseñar estrategias de mitigación y prevención basadas en la probabilidad de eventos extremos.

5.7.5. Análisis de tormenta

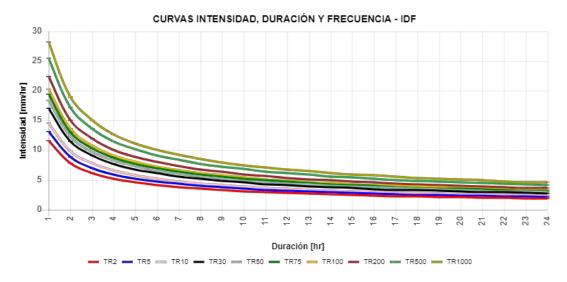

Un análisis de tormentas implica examinar en detalle las características y comportamientos de una tormenta, como su intensidad, duración, trayectoria y posible impacto. Este análisis utiliza datos meteorológicos, incluyendo precipitación, viento, presión atmosférica y temperatura. Es fundamental porque permite anticipar y reducir los efectos de fenómenos extremos como inundaciones, proporciona información para emitir alertas y realizar evacuaciones efectivas, ayuda en la gestión de recursos hídricos y mejora la comprensión de los patrones climáticos, lo que resulta esencial para proteger vidas, minimizar daños y optimizar la respuesta ante emergencias.

Tabla 35: Intensidad Duración

Intensidades de precipitación, para diferentes duraciones y periodos de retorno.							
Duración (hr)	TR2 (mm/hr)	TR5 (mm/hr)	TR10 (mm/hr)	TR30 (mm/hr)	TR50 (mm/hr)		
1	11,60	13,20	14,60	17,00	18,30		
2	7,80	8,80	9,80	11,40	12,30		
3	6,10	7,00	7,70	9,10	9,70		
4	5,20	5,90	6,60	7,70	8,30		
5	4,60	5,20	5,80	6,80	7,30		

Fuente: Senamhi

Figura N° Curvas Intensidad, Duración y Frecuencia

Fuente: Senamhi

Del gráfico y de la tabla, y considerando un periodo de retorno de 10 años y un tiempo de concentración de 1 hr, para la microcuenca de Cusco, tenemos una intensidad de diseño de 14.60 mm/hr.

CAPÍTULO VI: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

6.1. Agregado

6.1.1. Propiedades y accesibilidad del agregado fino

Finalizando todos los ensayos realizados en los agregados provenientes de las canteras de "Machu Picchu", y "Cunyac", se determinó el agregado fino para la realización del diseño de concreto permeable mediante la comparación de las propiedades físicas y mecánicas como se observa en la **Tabla 36**. El agregado fino debe ser aquel resistente a condiciones expuestas a la intemperie.

Tabla 36. Comparación Propiedades agregado fino

Estudio de canteras	Cantera ''Cunyac''	Cantera ''Machi Picchu''	
Facilidad de adquisición en la ciudad del Cusco	Factible	Poco Factible	
Distancia en Km hasta la ciudad del Cusco (UNSAAC)	99,8	366	
Tiempo de viaje hasta la cantera (Ida) en horas	2,28	4,25	
Resultados de propiedades de los agregados			
Analisis granulometrico del agregado fino (MTC E 204)			
Tamaño Maximo Nominla (T.M.N)	3/8"	3/8"	
Modulo de fineza (MF)	2001,89	3,107	
Gravedad especifica y absorción de agregados finos (MTC E 207)			
Gravedad especifica (gr/cm3)	2,72	2,59	
Absorción (%)	2,41	1,2	
Peso Unitario y vacio de los agregados (MTC E 203)			
Peso unitario suelto (kg/m3)	1690,48	1642,86	
Peso unitario compactado (kg/m3)	1857,14	1750	
Contenido de humedad del agregado fino (MTC E 215)			
Humedad (%)	1,77	1,67	
Cantidad de material fino que pasa el tamiz N° 200 por lavado (MTC F	E 202)		
Porcentaje material fino (%)	0,71	0,87	

De los resultados obtenidos en la **Tabla 36**, el agregado fino que cumple los requisitos necesarios para realizar la mezcla adecuada de concreto permeable y es asequible a su adquisición en la ciudad del Cusco, tomando en cuenta el material fino que pasa el tamiz N°200, granulometría, humedad y el porcentaje de absorción, es el proveniente de la cantera "Cunyac".

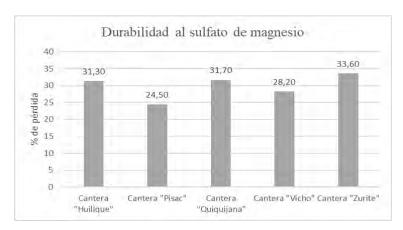
6.1.2. Propiedades y accesibilidad del agregado grueso

La selección del agregado grueso para la elaboración del concreto permeable, se realiza mediante la comparación de las propiedades físicas, mecánicas y de durabilidad. Se evalúa y compara estas propiedades para determinar el agregado que sea el más adecuado, tal como se observan en la **Tabla 37** y **Figura 13**, además de ser asequible en la ciudad del Cusco.

Tabla 37. Comparación propiedades del agregado grueso

Estudio de canteras	Cantera	Cantera	Cantera	Cantera	Cantera ''Zurite''
Facilidad de adquisición en la ciudad del Cusco	"Huillque" No Factible	"Pisac" Factible	''Quiquijana Factible	"Vicho" Factible	Factible
Distancia en Km hasta la ciudad del Cusco (UNSAAC)	83.4	35,2	32,8	39,8	45,2
Tiempo de viaje hasta la cantera (Ida) en horas	2.05	0.85	1.03	0.98	1,21
Trempo de viaje nasia la camera (taa) en noras	Cantera	Cantera	Cantera	Cantera	Cantera
Resultados de propiedades de los agregados	''Huillque''	"Pisac"	''Quiquijana	"Vicho"	"Zurite"
Analisis granulométrico del agregado grueso y fino (MTC E 204)	11q	1 15000	garqayana	, , , ,	20.00
Tamaño maximo nominal (T.M.N.)	1/2"	1/2 "	1/2"	1/2"	1/2"
Módulo de fineza (MF)	6,26	6,17	5,61	6,6	5,84
Peso específico y absorción de agregados gruesos (MTC E 206)				·	
Peso específico (gr/cm³)	2,58	2,59	2,53	2,54	2,55
Absorción (%)	1,83%	1,83%	2,11%	1,24%	2,49%
Peso unitario y vacios de los agregadoa (MTC E 203)					
Peso unitario suelto (kg/m³)	1392,86	1416,67	1642,86	1511,90	1392,86
Peso unitario compactado (kg/m³)	1619,05	1583,33	1666,67	1654,76	1642,86
Vacios del agregado	0,40	0,41	0,37	0,37	0,39
Contenido de humedad del agregado grueso (MTC E 215)					
Humedad (%)	0,88%	0,24%	1,70%	0,30%	1,09%
Abrasión Los Angeles al desgaste del agregado grueso (MTC E 207)					
Abrasión maquina Los Angeles (%)	23,35%	27,34%	31,10%	27,41%	28,90%
Cantidad de material fino que pasa el tamiz N° 200 por lavado (MTC E	11				
Porcentaje material fino (%)	1,49%	0,87%	3,75%	0,94%	2,82%

Figura 13. Ensayo abrasión "Los Angeles"


El menor valor de pérdida por desgaste de abrasión está presente en las canteras de "Huillque" con 23,35%, seguido de "Pisac" y "Vicho" con 27,34% y 27,41% respectivamente como se observa en la **Figura 13**. De acuerdo con los resultados presentados, se seleccionó el agregado grueso proveniente de la cantera "Pisac", el cual tiene el menor valor de pérdida por abrasión. Esta característica es determinante para elegir dicho agregado en el diseño de la mezcla del concreto permeable de acuerdo al reporte del ACI 522R-10.

En la **Tabla 38** y **Figura 14** se muestran los resultados obtenidos del ensayo de durabilidad al sulfato de magnesio realizado al agregado grueso, considerado también un factor de importancia debido a la exposición del agregado grueso debido a la porosidad que presenta el concreto permeable.

Tabla 38. Ensayo durabilidad al sulfato de magnesio

Ensayo	Cantera ''Huillque''	Cantera ''Pisac''	Cantera ''Quiquijana	Cantera ''Vicho''	Cantera ''Zurite''
Durabilidad al sulfato de magnesio (MTC E 209)					
% de pérdida	31,30%	24,50%	31,70%	28,20%	33,60%

Figura 14. Comparación Ensayo durabilidad al sulfato de magnesio

Se observa en la **Figura 14**, el agregado grueso proveniente de las canteras de "Pisac" y "Vicho" son los que poseen menores porcentajes de pérdida de masa por ataque de sulfatos, siendo estos 24,50% y 28,20% respectivamente.

Luego del análisis de los resultados, el agregado grueso que cumple los requisitos necesarios de durabilidad y posee las propiedades más adecuadas para realizar el diseño de pavimento de concreto permeable según los lineamientos del reporte del ACI 522R-10, es el agregado grueso de la cantera "Pisac", además de ser asequible en la ciudad del Cusco.

6.2. Diseño de mezcla

6.2.1. Relaciones y materiales

Los resultados referidos a la cantidad de materiales obtenidos del diseño de mezcla del concreto permeable bajo las consideraciones del reporte del ACI 522R-10, se muestran en la **Tabla 39**.

Tabla 39. diseño de mezcla del concreto permeable

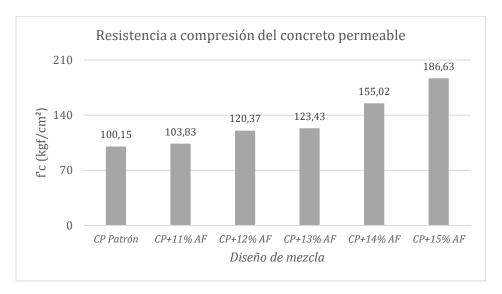
Diseño de				w (lt) V (m³)	_	Rango de proporción de material			
mezcla	AG (kg)	AF (kg)	C (kg)		V (m³)	w/C	(AG+AF)/C	AF/AG	
CP-F0	1110,99	0	424,15	172,48	0,26	0,41	2,6	0,0	
CP-F11	1110,99	286,96	424,15	175,25	0,15	0,41	3,3	0,3	
CP-F12	1110,99	313,05	424,15	175,5	0,14	0,41	3,4	0,3	
CP-F13	1110,99	339,14	424,15	175,76	0,13	0,41	3,4	0,3	
CP-F14	1110,99	365,23	424,15	176,01	0,12	0,41	3,5	0,3	
CP-F15	1110,99	391,32	424,15	176,26	0,11	0,42	3,5	0,4	

^{*}AG = Agregado grueso, AF = Agregado fino, C = Cemento IP, w = agua, V = contenido de vacíos

Se observa en la **Tabla 39** que la relación agua-cemento es mayor a lo recomendado por el reporte del ACI 522R-10, los mayores resultados de la relación w/C se deben a la corrección por humedad del agregado grueso y el agregado fino incorporado. Los ensayos de consistencia también sirvieron para determinar la relación agua-cemento adecuada para realizar el diseño de mezcla del concreto permeable.

La relación del agregado grueso y el agregado fino con el cemento, esta entre el rango de valores de 2.6 a 3.5, siendo mayor el valor de la relación a medida que el agregado fino añadido a la mezcla aumente.

6.3. Propiedades mecánicas


6.3.1. Resistencia a compresión

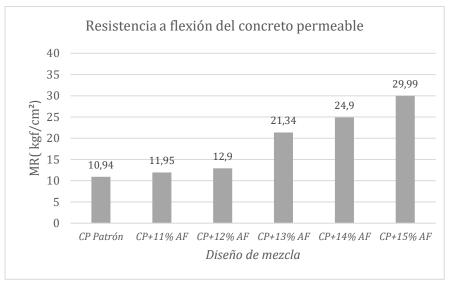
En la **Tabla 40** y **Figura 15** se muestran los resultados obtenidos del ensayo de resistencia a compresión del concreto permeable con diferentes cantidades de agregado fino añadido a la mezcla.

Tabla 40. Resistencia a compresión del concreto

Diseño de mezcla	Resitencia a compresión	variación
CP Patrón	100,15 kgf/cm ²	-43%
<i>CP+11% AF</i>	103,83 kgf/cm ²	-41%
<i>CP+12% AF</i>	120,37 kgf/cm ²	-31%
<i>CP+13% AF</i>	123,43 kgf/cm ²	-29%
CP+14% AF	155,02 kgf/cm ²	-11%
CP+15% AF	186,63 kgf/cm ²	7%

Figura 15. Comparación resistencia a compresión

Se observa en la **Tabla 40**, el concreto permeable (CP+15%AF), es la mezcla que alcanza la resistencia de diseño a compresión >f'c=175 kgf/cm² a los 28 días de edad. Es importante señalar que el reporte del ACI 522R-10, no determina la capacidad estructural del concreto permeable mediante la resistencia a compresión de muestras cilíndricas, debido a la cantidad de vacíos que contiene el concreto permeable lo que dificulta el ensayo de resistencia a compresión del concreto permeable, resultando en valores que presentan demasiada variabilidad; sin embargo se consideran los valores de resistencia a compresión en la investigación para el análisis y comparación de los resultados de las muestras obtenidas del diseño de mezcla con cantidades de agregado fino añadido a la mezcla. Siendo la mezcla de concreto permeable con 15% de agregado fino añadido, el adecuado para su uso como pavimento permeable en zonas de bajo volumen de tránsito.


6.3.2. Resistencia a flexión

En la **Tabla 41** y **Figura 16** se muestran los resultados obtenidos del ensayo de resistencia a flexión del concreto permeable con diferentes cantidades de agregado fino añadido a la mezcla.

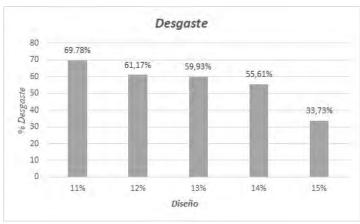
Tabla 41. Análisis Resistencia a flexión (MR)

Diseño de mezcla	Resitencia a flexión (kgf/cm²)	variación respecto al CP patron
CP Patrón	10,94 kgf/cm ²	0%
CP+11% AF	11,95 kgf/cm ²	9%
CP+12% AF	12,90 kgf/cm ²	18%
<i>CP+13% AF</i>	21,34 kgf/cm ²	95%
CP+14% AF	24,90 kgf/cm ²	128%
<i>CP+15% AF</i>	29,99 kgf/cm ²	174%

Figura 16. Comparación resistencia a flexión

Como se observa en la **Figura 16**, a medida que se va añadiendo agregado fino a la mezcla de concreto permeable la resistencia a flexión aumenta significativamente, llegando hasta un valor promedio máximo del MR = 29,99 kgf/cm² con 15% de adición de agregado fino a la mezcla, llegando a ser hasta un 174% mayor al concreto permeable patrón elaborado con 0% de agregago fino el cual tuvo un MR = 10,94 kgf/cm².

El concreto permeable con un 15% de agregado fino incorporado ha demostrado ser el más adecuado debido a sus óptimas propiedades de resistencia a compresión y flexión. Estas propiedades lo hacen ideal para su aplicación en pavimentos de concreto permeable destinados a vías de bajo volumen de tránsito.

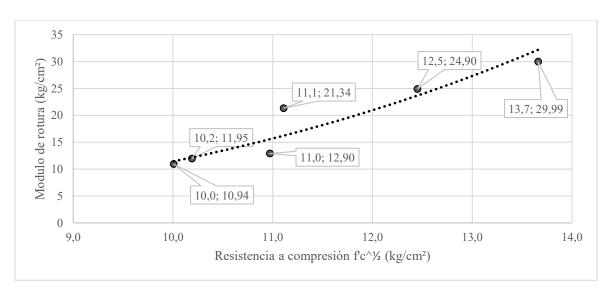

6.3.3. Análisis ensayo Cántabro

En la **Tabla 42** y **Figura 17** se muestran los resultados obtenidos del ensayo de perdida al desgaste o cántabro del concreto permeable con diferentes cantidades de agregado fino añadido a la mezcla.

Tabla 42. ensayo de perdida al desgaste o cántabro

Diseño de	Desgaste (%)	Variación respecto al
mezcla		11% (%)
11%	69,78	0,00
12%	61,17	12,34
13%	58,93	15,55
14%	55,61	20,31
15%	33,73	51,66

Figura 17. Comparación resultados ensayo cántabro


Fuente: Elaboración propia

Se observa en la **Tabla 42** y **Figura 17**, respecto a la propiedad de pérdida por desgaste del concreto permeable. A medida se incremente la cantidad de agregado fino en la mezcla del concreto permeable, el porcentaje de desgaste del concreto permeable disminuye significativamente.

6.3.4. Relación MR vs f'c

En la **Figura 18** se relaciona la resistencia a flexión vs la resistencia a compresión del concreto permeable y determinar los factores F y E en la ecuación $MR=F^*(f'c)^E$, que mejor se ajusten a las propiedades del concreto permeable.

Figura 18. grafica MR vs f'c

Ajuste de los datos a una curva potencial entre el MR vs f'c del concreto permeable:

La ecuación será de la forma.

$$MR = F * \sqrt{f'c}^{E}$$

Puede ser escrita de la siguiente forma.

$$h(X) = \beta * X^{\alpha}$$

• Donde los valores de β y α son los valores que necesitamos conocer, para ello aplicaremos logaritmo a ambos lados, obteniendo lo siguiente:

$$\ln(h(x)) = \ln(\beta * X^{\alpha})$$
$$\ln(h(x)) = \ln(\beta) + \alpha * \ln(X)$$

• Haciendo ln(h(x)) = H, $ln(\beta) = A$ y $\alpha*ln(X) = Bx$, obteniendo así la siguiente ecuación.

$$H = A + BX$$

 La anterior ecuación se asemeja a una recta, entonces los valores A y B se pueden determinar mediante la regresión por mínimos cuadrados.

$$Y = C1 * X + C2$$

Donde:

$$C1 = \frac{n\sum XiYi - \sum Xi\sum Yi}{n\sum Xi^2 - (\sum Xi)^2}$$
$$C2 = \frac{\sum Yi}{n} - C1 * \frac{\sum Xi}{n}$$

 Desarrollando las anteriores ecuaciones se obtendrán los valores de C1 y C2 con ayuda de la Tabla 43.

Tabla 43. Tabla valores Xi y Yi

h(x)	X	ln(h(x))	ln(x)	Xi*Yi	Xi²	Yi²
MR (kgf/cm^2) f'c^1/2 (kgf/cm^2)		Yi	Xi	Al II	Ai	11
10,94	10,01	2,39	2,30	5,51	5,31	5,72
11,95	10,19	2,48	2,32	5,76	5,39	6,15
12,90	10,97	2,56	2,40	6,13	5,74	6,54
21,34	11,11	3,06	2,41	7,37	5,80	9,37
24,90	12,45	3,21	2,52	8,11	6,36	10,34
29,99	13,66	3,40	2,61	8,89	6,84	11,57
	Σ	17,11	14,56	41,76	35,42	49,69

Fuente: Elaboración propia

$$C1 = \frac{6(41,76) - (14,56)(17,11)}{6(35,42) - (14,56)^2} = 3,3165$$

$$C2 = \frac{17,11}{6} - 3,3202\left(\frac{14,56}{6}\right) = -5,1993$$

 Ya obtenidos los valores de C1 y C2, hacemos que C1 = B = α y C2 = A = ln(β) y regresando a la ecuación inicial.

$$h(x) = \beta * X^{\alpha}$$

$$MR = F * \sqrt{f'c}^E$$

 Obteniendo la ecuación que relaciona el módulo de rotura con la resistencia a compresión del concreto permeable con porcentajes añadidos de agregado fino de 11%,12%, 13% 14% y 15% del volumen total de la mezcla.

$$MR = 0.0055 * \sqrt{f'c}^{3.32}$$

Donde:

MR: Modulo de rotura del concreto permeable (kgf/cm²)

f'c: resistencia compresión del concreto permeable (kgf/cm²)

6.4. Propiedades hidráulicas

6.4.1. Permeabilidad

En la **Tabla 44** y **Figura 19** se muestran los resultados obtenidos del ensayo de permeabilidad del concreto permeable con diferentes cantidades de agregado fino añadido a la mezcla.

Tabla 44. Permeabilidad del concreto permeable

Diseño de Permeabilidad		l Variación respecto al CP		
mezcla		(%)		
0%	1,07	0,00		
11%	0,99	7,48		
12%	0,92	14,02		
13%	0,82	23,36		
14%	0,64	40,19		
15%	0,44	58,88		

Figura 19. Comparación permeabilidad

Se observa en la **Tabla 44** que a medida que la cantidad de finos se incrementa, la permeabilidad del concreto permeable disminuye significativamente; sin embargo, a partir del diseño que contiene 14% de finos, se observa una disminución más drástica de la permeabilidad.

6.4.2. Infiltración

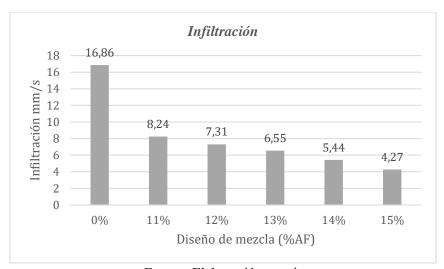

En la **Tabla 45** y **Figura 20** se muestran los resultados obtenidos del ensayo de infiltración del concreto permeable con diferentes cantidades de agregado fino añadido a la mezcla.

Tabla 45. Infiltración del concreto permeable

Diseño de	Infiltración	Variación respecto al CP
mezcla	(mm/s)	(%)
0%	16,86	0,00
11%	8,24	51,13
12%	7,31	56,64
13%	6,55	61,15
14%	5,44	67,73
15%	4,27	74,67

Fuente: Elaboración propia

Figura 20. Comparación infiltración

Fuente: Elaboración propia

Se observa en la **Tabla 45** en referencia a la infiltración del concreto permeable, que a medida que aumenta la cantidad de finos, la velocidad de infiltración del concreto permeable disminuye significativamente.

6.5. Estudio hidrológico

La intensidad de diseño calculada a través de la curva IDF, brinda el resultado de 14.60 mm/hr, el mismo, transformado a mm/ s, da el resultado de 0.00406 mm/s.

En la siguiente tabla se compara la intensidad de diseño contra la permeabilidad y la infiltración hallada para cada diseño

Tabla 46. Intensidad de diseño vs permeabilidad e infiltración

Diseño de mezcla	Perme abilidad (cm/s)	Infiltración (mm/s)	Intensidad de diseño (mm/s)
0%	1,07	16,86	
11%	0,99	8,24	
12%	0,92	7,31	0.046
13%	0,82	6,55	0,040
14%	0,64	5,44	
15%	0,44	4,27	

Tal como se muestra en la tabla, los diferentes diseños de concreto permeable, que incorporan diversas proporciones de agregado fino, han resultado ser adecuados para su uso en la región de Cusco. Estos hallazgos indican que, todos los diseños cumplen con los criterios de permeabilidad e infiltración exigidos para su aplicación en esta área, lo que sugiere que el concreto permeable es una opción viable y adaptable a las condiciones particulares del entorno cusqueño.

CAPÍTULO VII: CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

- CG: La hipótesis general, ha sido confirmada, la mezcla con un 15% de agregado fino cumple con las propiedades mecánicas e hidráulicas requeridas para este tipo de pavimentos.
 - El objetivo general demuestra que la mezcla con un 15% de agregado fino ofrece una combinación óptima de propiedades, incluyendo resistencia a compresión, resistencia a flexión, permeabilidad e infiltración. Con lo que el objetivo general se ha cumplido.
 - Estos resultados están respaldados por pruebas de resistencia a compresión y flexión, así como por mediciones de permeabilidad e infiltración,
- **CE1:** La hipótesis especifica número uno ha sido comprobada, los agregados provenientes de las canteras de Pisac y Cunyac, tienen las propiedades adecuadas para el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito.
 - El objetivo específico fue alcanzado con éxito. Además, la accesibilidad y proximidad de las canteras seleccionadas garantizan un suministro eficiente y económico de los agregados necesarios.
- CE2: La hipótesis específica número dos, ha sido comprobada. Los resultados experimentales muestran que la mezcla con un 15% de agregado fino proporciona las propiedades mecánicas aceptables.
 - El objetivo específico número dos fue alcanzado con éxito. La mezcla con un 15% de agregado fino demostró ser efectiva en términos de resistencia a compresión (f'c = 186,63 kgf/cm²), flexión (Mr = 29,99 kgf/cm²) y desgaste por abrasión (33.73%).
 - La conclusión se fundamenta en datos obtenidos a través de pruebas de laboratorio detalladas.
- **CE3:** La hipótesis específica número tres y el objetivo específico número tres, fueron alcanzados con éxito. La mezcla con un 15% de agregado fino demostró ser la más efectiva en términos de propiedades hidráulicas (K = 0,44 cm/s y I = 4,27 mm/s).
 - La conclusión se fundamenta en datos obtenidos a través de pruebas de laboratorio.

7.2. Recomendaciones

- R1: Se recomienda tener especial cuidado en el curado del concreto permeable, al poseer una estructura porosa, cualquier elemento perjudicial, tales como aguas negras, o sustancias nocivas o acidas, pueden afectar significativamente a los agregados o el cemento, y, por ende, podría reducir las propiedades mecánicas del concreto permeable.
- R2: Se recomienda tener especial cuidado con la elección del agregado fino y grueso, ya que, a pesar de tener mejores propiedades, algunos son complicados de obtener, ya sean por razones de índole social, o por elevado coste de transporte.
- **R3:** Se recomienda especial cuidado al momento de la preparación al añadir el agregado fino, ya que, pequeñas variaciones en la humedad, pueden variar el diseño y la consistencia del concreto.
- R4: Se recomienda realizar más ensayos al concreto permeable a futuro, para determinar su comportamiento frente a factores climáticos que puedan afectar su durabilidad significativamente.

Referencias bibliográficas

- Castillo, K., & Saavedra, C. C. (2021). Diseño de mezcla de concreto permeable para uso en pavimento rígido, Piura 2021, [Tesis de Pregrado, UCV]. Repositorio UCV. Obtenido de https://hdl.handle.net/20.500.12692/74058
- Comisión de Reglamentos Técnicos y Comerciales. (2001). Norma Técnica Peruana 400.012: AGREGADOS. Análisis granulométrico del agregado fino, grueso y global. Obtenido de https://es.slideshare.net/slideshow/norma-tecnica-peruana-agregadoa-400012/32898000
- Díaz, A., Herrera, T., & Marrero, I. (2020). Estudio de las características del hormigón permeable y su implemetación en el Uruguay, [Tesis de Pregrado, UDELAR]. Repositorio UDELAR. Obtenido de https://hdl.handle.net/20.500.12008/23909
- Escuela Profesional de Arquitectura. (2023). Desempeño atlético y eco sostenibilidad en el diseño del centro de alto rendimiento para deportes de contacto en la región de Cusco. Universidad Andina del Cusco. Repositorio UAndina.
- Hernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, P. (2006). *Metodologia de la Investigacion Cuarta Edicion*. Mexico: McGraw-Hill.
- Instituto Americano del Concreto comite 522. (2010a). *Reporte comite ACI 522R-10*. Instituto Americano del Concreto.
- Instituto Americano del concreto comite 522. (2010b). *Reporte comite ACI 522R-10*. Insituto Americano del Concreto.
- Instituto Americano del Concreto comite 522. (2010c). Reporte comite ACI 522R-10: Introducción y alcance. Instituto Americano del Concreto.
- Instituto Americano del Concreto comite 522. (2010d). *Reporte comite ACI 522R-10: Propiedades*. Instituto Americano del Concreto.
- Instituto Americano del Concreto comite 522. (2010e). *Reporte comite ACI 522R-10: Notación y definición*. Instituto Americano del Concreto.
- Instituto Americano del Concreto comite 522. (2010f). Reporte comite ACI 522R-10: Notación y definiciones. Instituto Americano del Concreto.
- Instituto Americano del Concreto comite 522. (2010g). Propiedades: permeabilidad. *Reporte comite ACI* 522R-10. ACI.
- Instituto Americano del Concreto comite 522. (2010h). Propiedades: Tasa de infiltración. *Reporte comite ACI 522R-10*. ACI.
- Instituto Nacional de Calidad. (2015). Norma Técnica Peruana 339.037: Concreto. Práctica normalizada para el refrentado de testigos cilíndricos de concreto, 4ta Edición. Obtenido de https://es.scribd.com/document/546155923/NTP-339-037-2015

- Instituto Nacional de Calidad. (2021). Norma Técnica Peruana 339.034: Concreto. Determinación de la resistencia a la compresión del concreto en muestras cilíndricas, 5ta Edición. Obtenido de https://es.scribd.com/document/629086369/33396-NTP-339-034
- Instituto Nacional de Calidad. (2021). Norma Técnica Peruana 339.185: AGREGADOS. Determinación del contenido de humedad total evaporable de agregados por secado. Método de ensayo, 3ra Edición.

 Obtenido de https://es.scribd.com/document/649882034/NTP-339-185
- Instituto Nacional de Claidad. (2022). Norma Técnica peruana 339.078: Determinación de la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios de la distancia entre apoyos, 4ta Edición.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. (2002).

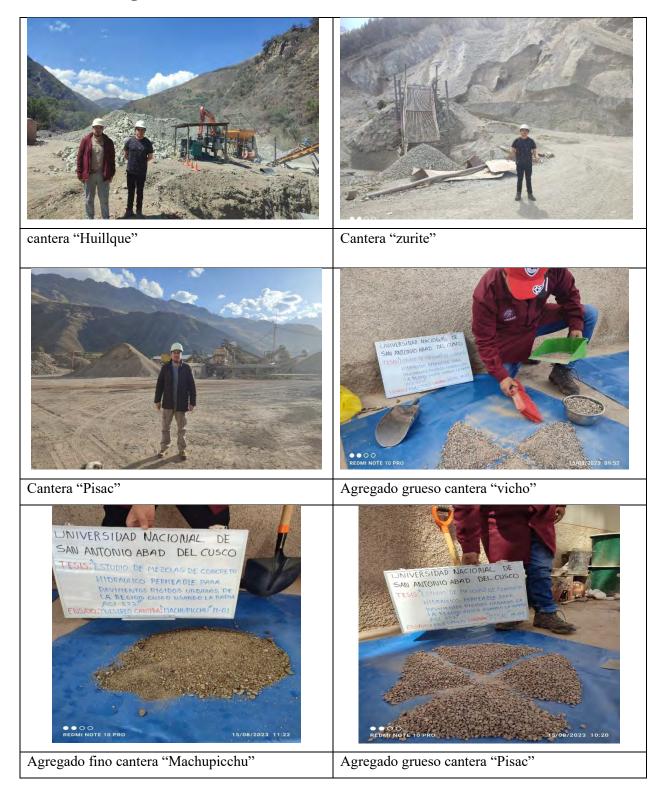
 Norma Técnica Peruana 400.018: AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 um (N° 200) por lavado en agregados.

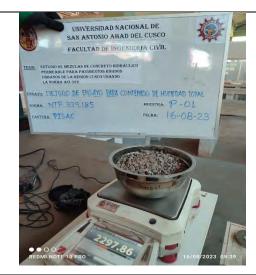
 Obtenido de https://www.studocu.com/pe/document/universidad-catolica-santo-toribio-demogrovejo/tecnologia-del-concreto/ntp-400018-materiales-que-pasan-la-malla-200/13197432
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. (2009).

 *Norma Técnica Peruana 339.035: HORMIGON (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland, 3ra Edición. Obtenido de https://pdfcoffee.com/ntp-3390352009pdf-pdf-free.html
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. (2011).

 Norma Técnica Peruana 400.017: AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacios de los agregados.

 Obtenido de https://www.studocu.com/pe/document/universidad-san-pedro/mecanica-desuelos/ntp-400-norma-tecnica-peruana-4000172011/9733538
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. (2013). Norma Técnica Peruana 400.021: AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso. Obtenido de https://es.slideshare.net/slideshow/ntp-400021-2013-densidad-relativa-peso-específico-y-absorcinagreg-grueso-grupo-4/250634558
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. (2014).


 Norma Técnica Peruana 400.019: AGREGADOS. Método de ensayo normalizado para la determinación de la resistencia a la degradación en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Ángeles. Obtenido de https://es.scribd.com/document/413798334/NTP-400-019


- Jesús, E. M., & De la Cruz, K. M. (2021). Evaluación de concreto permeable en vías peatonales como alternativa de drenaje pluvial, [Tesis de pregrado, UPLA]. Repositorio UPLA. Obtenido de https://hdl.handle.net/20.500.12848/3016
- Lopez, E. R. (1992). *Diseño de mezclas*. Editorial HOZLO S.CR.L. Obtenido de https://es.slideshare.net/slideshow/diseno-demezclasenrriquerivvalopez/78390595
- Ministerio de Transportes y Comunicaciones. (2017). AGREGADOS: MTC E 209. Durabilidad al sulfato de sodio y sulfato de magnesio. *Manual de Ensayo de Materiales*, (p. 302). MTC. Obtenido de https://drive.google.com/file/d/1Am1jUdFkZerWNuzyX8CxljoBghSde6d /view?usp=drive link
- Ministerio de Transportes y Comunicaciones. (2017). CONCRETO: MTC E 702. Elaboración y curado de especimenes de hormigon (concreto) en el laboratorio. *Manual de Ensayo de Materiales*, (p. 684-692). MTC. Obtenido de https://drive.google.com/file/d/1Am1jUdFkZerWNuzyX8CxljoBghSde6d /view?usp=drive link
- Ministerioo de Transportes y Comunicaciones. (2017). MTC E 515: Caracterización de las mezclas bituminosas por medio del ensayo cantabro de pérdida por desgaste. *Manual de Ensayo de Materiales*, (p. 573-574). MTC. Obtenido de https://drive.google.com/file/d/1Am1jUdFkZerWNuzyX8CxljoBghSde6d /view?usp=drive link
- Nazeer, M., Kapoor, K., & Singh, S. P. (2023). Resistencia y propiedades microestructurales del concreto permeable elaborado con diferentes proporciones de finos. *Revista Europea de Ingeniería Ambiental y Civil*, 27(13), 3966-3990. doi:https://doi.org/10.1080/19648189.2023.2168763
- Pacheco, K. D., & Seminario, S. A. (2023). Concreto permeable en la gestión de aguas pluviales, a nivel piloto, [Tesis de Pregrado, UNAC]. Repositorio UNAC. Obtenido de https://hdl.handle.net/20.500.12952/8267
- Pérez, D. (2009). Estudio experimental de concretos permeables con agregados andesíticos, [Tesis de Maestria, UNAM]. Repositorio UNAM. Obtenido de https://repositorio.unam.mx/contenidos/103037
- Perez, M. C. (2017). Evaluacion de alternativas para la Depuracion de Aguas Residuales de la Estacion Idepuradora de Aguas Residuales (EDAR) del Municipio de Villaluenga del Rosario (Cadiz). Cadiz, España.
- Sanjuán Barbudo, M. A., & Chinchón Yepes, S. (2014). *Introducción a la fabricación y normalización del cemento Portland*. Universidad de Alicante. Obtenido de https://rua.ua.es/dspace/bitstream/10045/45347/1/2014 Sanjuan Chinchon Cemento-Portland.pdf
- Silva A., J. M., & Zumaran R., W. E. (2020). *Materiales sostenibles en la construcción de viviendas*. *Revisión sistemática entre 2009-2019. Universidad Privada del Norte.* Repositorio UPN.

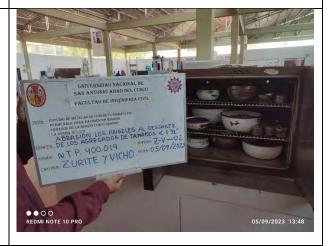
- Sociedad Estadounidense para Pruebas y Materiales. (2011). *ASTM C33. Especificación estándar para agregados de concreto*. ASTM. Obtenido de https://www.udocz.com/apuntes/29480/astm-c33-11
- Sociedad Estadounidense para Pruebas y Materiales. (2023). *C 1701: Método de prueba estándar para tasa de infiltración del concreto permeable en campo*. ASTM. Obtenido de https://cdn.standards.iteh.ai/samples/116304/27c35226697a4d4189199e2a95fe4d92/ASTM-C1701-C1701M-17a-2023-.pdf
- Steve, W. (2023). "Utilización de plástico de desperdicio modificado en bloques de concreto permeable con contenido de agregado fino". Jurnal Teknologi. doi:https://doi.org/10.11113/jurnalteknologi.v85.19219|
- Supit, S. W. (2023). "Aprovechamiento de residuos plásticos modificados para bloques de concreto poroso que contiene agregado fino". doi:https://doi.org/10.11113/jurnalteknologi.v85.19219
- Tarifeño, Y. B. (2019). Evaluación de las propiedades del concreto permeable en pavimentos especiales, Lambayeque, 2018, [Tesis de Pregrado, USS]. Repositorio USS. Obtenido de https://hdl.handle.net/20.500.12802/6425
- Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). *Pavimentros de concreto permeable*. Asociación del Cemento Portland.
- Vélez, M. V., & Vásquez, L. M. (2004). Métodos para determinar la recarga en acuíferos, (11), 51-62.
 AVANCES EN RECURSOS HIDRAULICOS. Obtenido de https://revistas.unal.edu.co/index.php/arh/article/view/93044/77820

ANEXOS

a. Panel fotográfico

Ensayo contenido de humedad del agregado grueso

Cantidad material fino pasante al tamiz N° 200 o 75 um por lavado


Ensayo análisis granulométrico de los agregados

Muestra ensayo abrasión Los Ángeles

Ensayo abrasión Los Ángeles

Agregado grueso cantera "Pisac"

Ensayo peso específico y absorción (muestra saturada superficialmente seca)

Ensayo peso específico y absorción (Peso muestra sumergida)

Ensayo peso específico y absorción del agregado fino

Ensayo peso unitario y vacíos de los agregados

Ensayo resistencia a compresión del concreto

Refrentado con yeso del concreto

Excavación de zanjas para las losas de concreto permeable

Vaciado losas de concreto permeable

Desencofrado y curado de briquetas y viguetas

Muestras ensayo cantabro y permeabilidad

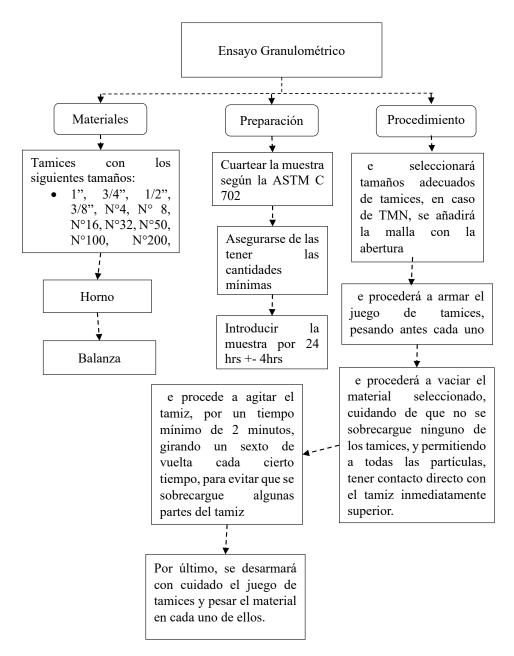
Ensayo "slump" del concreto permeable

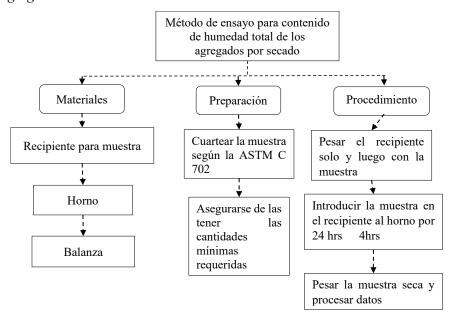
Ensayo resistencia a flexión del concreto

Muestras ensayo cantabro concreto permeable

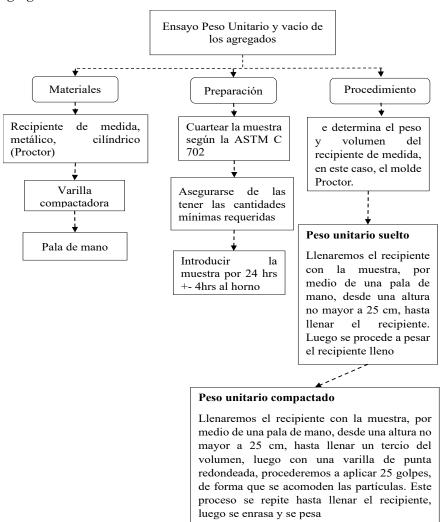
Ensayo cantabro concreto permeable

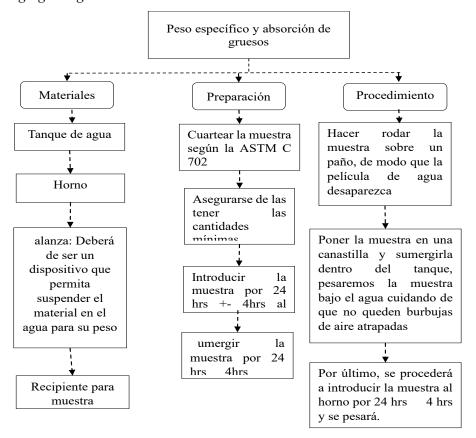
Ensayo permeabilidad del concreto permeable

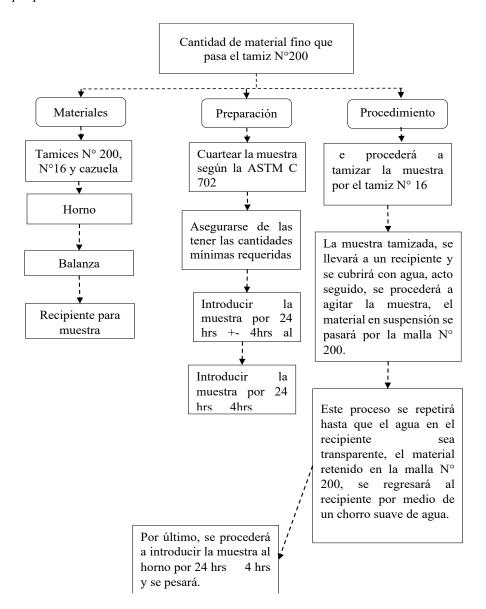

Ensayo infiltración del concreto permeable

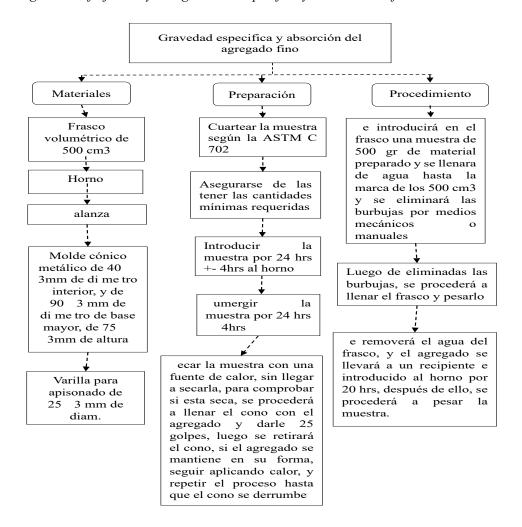

Muestras ensayadas del concreto permeable

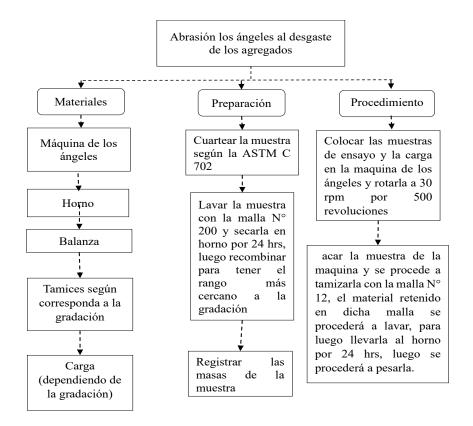
b. Procedimiento ensayos de laboratorio de los agregados

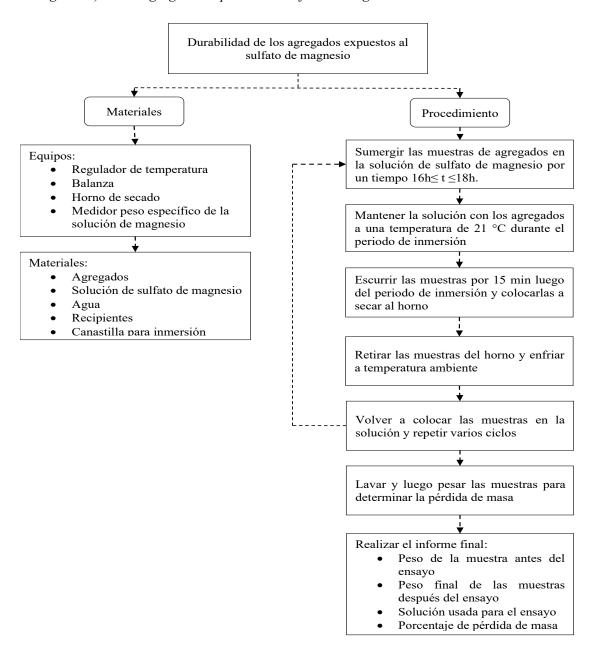

Anexo b1: Diagrama de flujo de materiales, preparación y procedimiento para determinar la gradación del agregado.


Anexo b2: Diagrama de flujo de materiales, preparación y procedimiento para determinar el contenido de humedad del agregado.

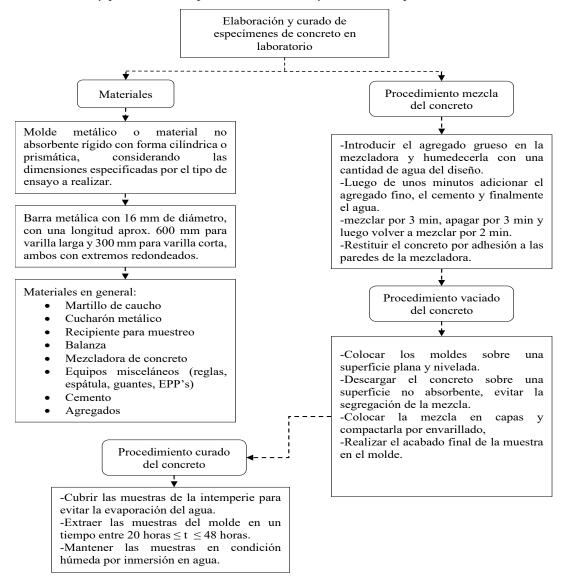

Anexo b3: Diagrama de flujo de materiales, preparación y procedimiento para el ensayo de peso unitario y vacio de los agregados


Anexo b4: Diagrama de flujo de materiales, preparación y procedimiento para el ensayo de peso especifico y absorción de agregados gruesos

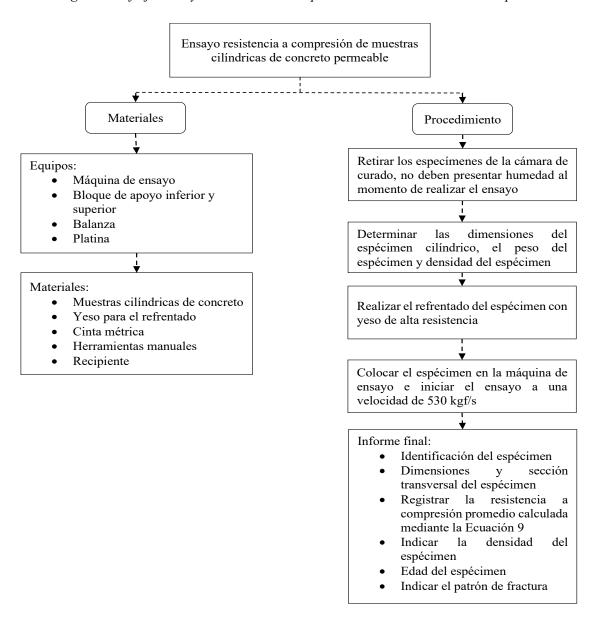

Anexo b5: Diagrama de flujo de materiales, preparación y procedimiento para el ensayo de cantidad de material fino que pasa el tamiz $N^{\circ}200$


Anexo b6: Diagrama de flujo ensayo de gravedad especifica y absorción de finos

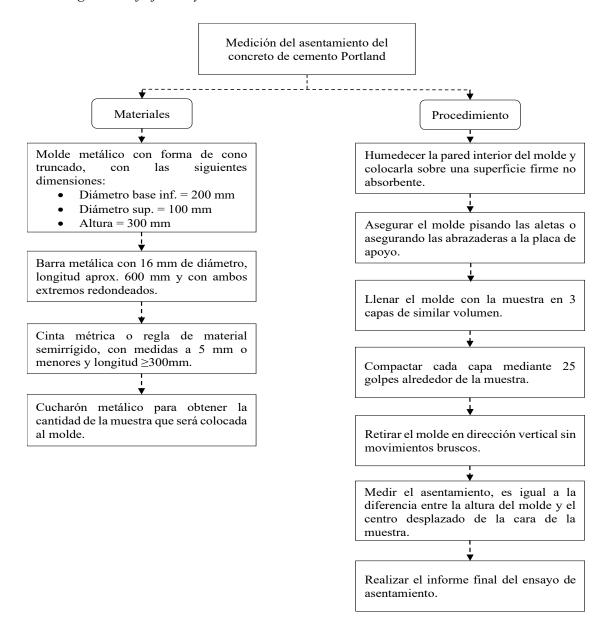
Anexo b7: Diagrama de flujo de materiales y procedimiento para el ensayo abrasión Los Ángeles

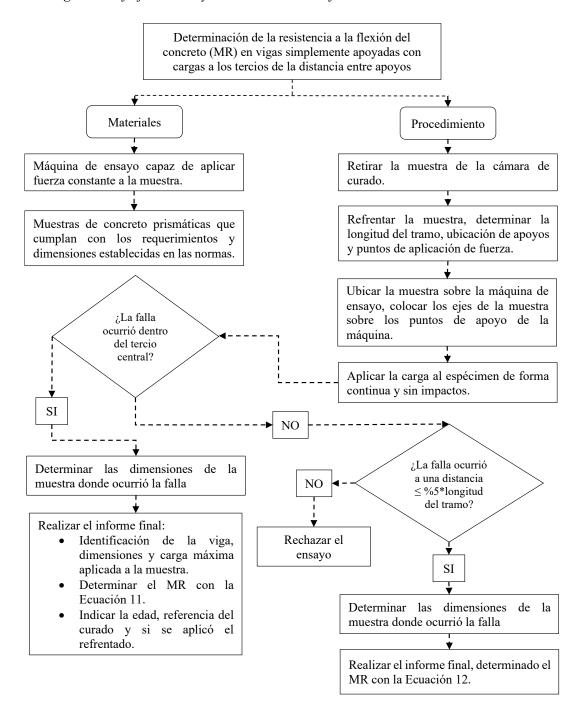


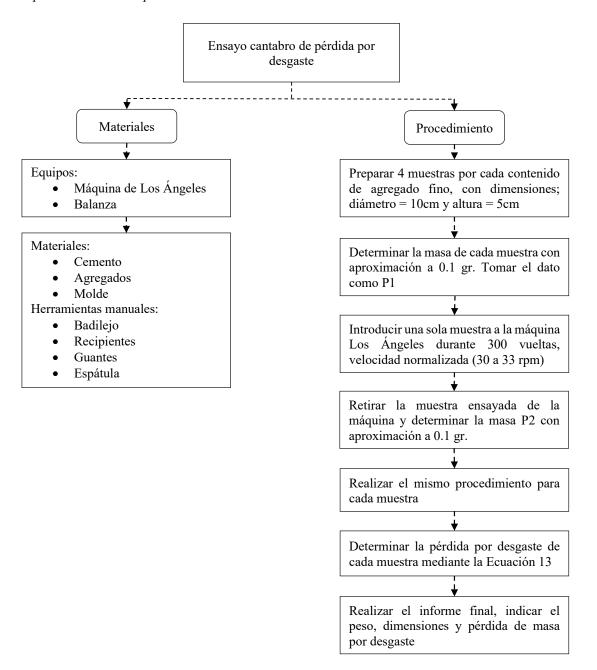
Anexo b8: Diagrama de flujo, materiales y procedimiento para determinar la durabilidad (pérdida de masa por desintegración) de los agregados expuestos al sulfato de magnesio

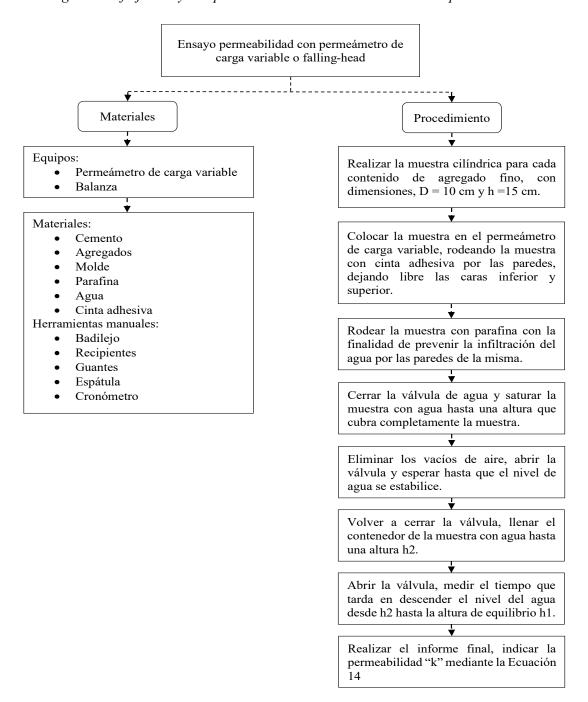


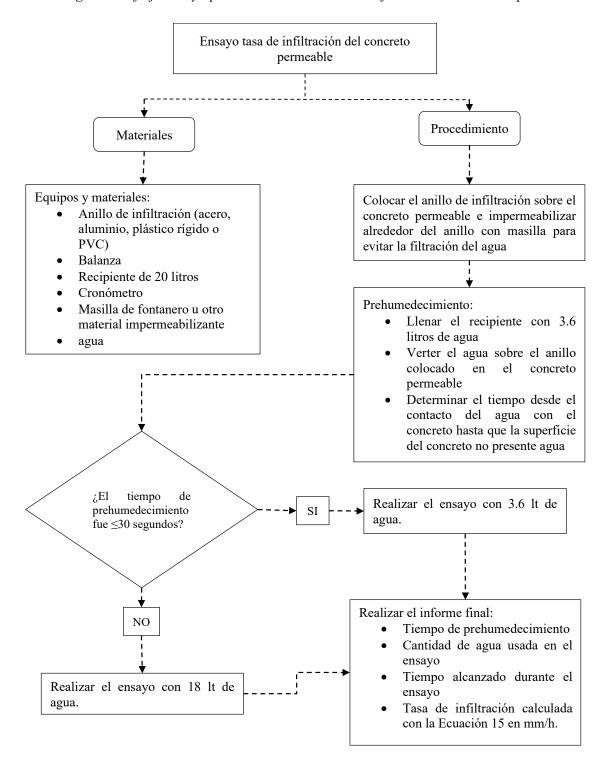
c. Procedimiento ensayos de laboratorio concreto


Anexo c1: materiales y procedimiento para la elaboración y curado de especimenes de concreto


Anexo c2: Diagrama de flujo ensayo resistencia a compresión en muestras de concreto permeable


Anexo c3: Diagrama de flujo ensayo asentamiento del concreto hecho con cemento Portland


Anexo c4: Diagrama de flujo del ensayo de resistencia a la flexión del concreto


Anexo c5: Procedimiento para realizar el ensayo cantabro de perdida por desgaste aplicado a muestras hechas a partir de concreto permeable

Anexo c6: Diagrama de flujo ensayo de permeabilidad en muestras de concreto permeable.

Anexo c7: Diagrama de flujo ensayo para determinar la tasa de infiltración del concreto permeable

d. Fichas de laboratorio ensayos de laboratorio

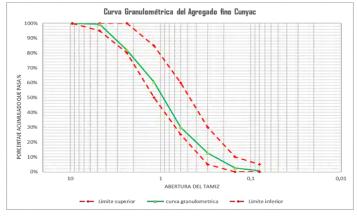
Anexo d1: Análisis granulométrico agregado Fino

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"


Laboratorio: Análisis granulometrico del agregado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.034, ASTM C39

			Transportable Inch	E 204	A DO FINO "C		
Peso de la muestra 2001,89 T.M. 1/2"					MF:3.		
T.MN Tamiz	Abertwa (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acum ulado	% Acumulado que pasa	Huso 6	7
3/8"	9,5	0,25	0,01%	0,01%	100,00%	100%	100%
Nº 4	4,75	10,23	0,51%	0,52%	99,48%	95%	100%
N° 8	2,36	350,86	17,53%	18,05%	81,95%	80%	100%
Nº 16	1,18	428,96	21,43%	39,48%	60,52%	50%	85%
N° 30	0,6	610.51	30,50%	69.98%	30,02%	25%	60%
N° 50	0,3	350,23	17,49%	87,47%	12,53%	5%	30%
Nº 100	0,15	200,36	10,01%	97,48%	2,52%	0%	10%
N° 200	0,08	35,24	1,76%	99,24%	0,76%	0%	5%
Fondo	- 6	15,25	0.76%	100.00%	0,00%		
TOTAL	Σ	2001.89		the same of the			

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Gravedad específica y absorción del agregado fino

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022

GRAVEDAD ESPECIFICA Y ABSORCION DE AGREGADOS FINOS - Castern "Castern "Cast						
M. (/2* (MN 98°						
Descripción		Mustratt	Macdio 02	Mustralia		
A) Yel. Picrometre (ml)		500	500	500		
S) Poso de la muestraseca + Poso recipiento (gr)		G09,9	510.5	512,7		
E) Peso recipiente (gri		121,6	122,57	123,54		
D) Poso del gionômetro + agua basta marca (gr)		695,1	655.82	128,52		
E) Peso del picnómetro con agua + Peso de lamuestra saturada den superficie seco.		964.25	964.65	964,95		
F) Peso de l'amueltira saturada que superficie seca		499,98	43.39	500,01		
	Cálculos					
G) Peso de la muestraseca en el florito	9.0	487,3	48.23	489,16		
Fravedad especifica a garente (gg/cm3)	G/(D+F-E)	235	2.25	2.95		
Fravedad espedilica agarente saturado (gr/cm3)	F/(D+F-E)	2,62	2,62	2,61		
Fravedad espeditica nominal (gr/cmB)	G/(D+G-E)	2,74	2,72	2.71		
ravedad Especifica Promedio (gr/cm3)			2,72			
forcentaje de absorción	(A: GI/G* 100)	2,61	2,41	2.22		
Fravedad Especifica Promedio (gr/cm3)			2,41			

1690,48

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios del agregado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017

Peso unitario suelto promedio (kg/m^3)

	PE SO UNIT ARIO Y VACIOS DE LOS AGREGA	ADOS - Cantera "Cunyac"		
	MTC E 203			
T.M.	1/2"			
T.M.N	3/8"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del recipien	ite (kg)	7,9	7,9	7,9
(V) Volumen de I reci	ipiente (m^3)	0,0028	0,0028	0,0028
(G) Peso del recipier	nte + muestra suelta (kg)	12,7	12,6	12,6
	Calculos			
(M) Peso de la mues	tra suelta (kg): G-T	4,8	4,7	4,7
Peso unitario suelto	(kg/m ^3): <i>M/V</i>	1714,29	1678,57	1678,57

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios del agregado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017

P	ESO UNITARIO Y VACIOS DE LOS AGREGADOS - Cantera "Cunyac	11
	MTC E 203	
T.M	1/2"	
T.MN	3/8"	

Descripción	Muestra 01	Muestra 02	Muestra 03
Numero de capas	3	3	3
Numero de golpes	25	25	25
(T) Peso del recipiente (kg)	7,9	7,9	7,9
(V) Volumen del recipiente (m^3)	0,0028	0,0028	0,0028
(G) Peso del recipiente + muestra compactada (kg)	13,1	13,1	13,1
Calculos			
(M) Peso de la muestra compactada (kg): G-T	5,2	5,2	5,2
Peso unitario compactado (kg/m^3); M/V	1857,14	1857,14	1857,14
Peso unitario compactado promedio (kg/m^3)		1857,14	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total del agregado fino por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339,185

Muestra: Agregado fino cantera "Cunyac"

CONTENIDO DE HUMEDAD DEL AGREGADO FINO - Cantera "Cunyac"

MTC E 215

T.M. 1/2" T.M.N 3/8"

Descripción	luestra Ouestra (Muestra 03				
(R) Peso del recipiente (kg)	157,68	157,7	157,68		
(H) Peso de la muestra húmeda + recipiente	900,26	830,8	851,06		
(W) Peso de la muestra humeda (gr): H-R	742,58	673,1	693,38		
(S) Peso de la muestra seca + recipiente (gr)	887,3	819,1	839,1		
(D) Peso de la muestra se ca (gr): S-R	729,62	661,4	681,42		
Calculos					
% de humedad del agregado fino: (W-D)/D*100	1,78	1,77	1,76		
% de hume dad prome dio de l agrega do fino	0 1,77				

0.71

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

> PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material fino que pasa el tamiz Nº200 por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,018

Muestra: Agregado fino cantera "Cunyac"

CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ Nº200 POR LAVADO - Cantera "Cunyac" MTC E 202, NTP 400.018 T.M 1/2" 3/8" T.MN Descripción Muestra 01 Muestra 02 Muestra 03 122.26 122.26 122.26 (R) Peso del recipiente (kg) 2560,21 2380,36 2465,89 (H) Peso de la muestra húmeda + recipiente antes de lavado (W) Peso de la muestra húmeda antes de la vado(gr); H-R. 2437.95 2258.10 2343.63 (S) Peso de la muestra seca + recipiente de spués de lavado (gr) 2545,21 2362.36 244935 2422.95 (D) Peso de la muestra seca después de lavado (gr): S-R. 2240.10 2327.09

Cálculos

0.62

0.80

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

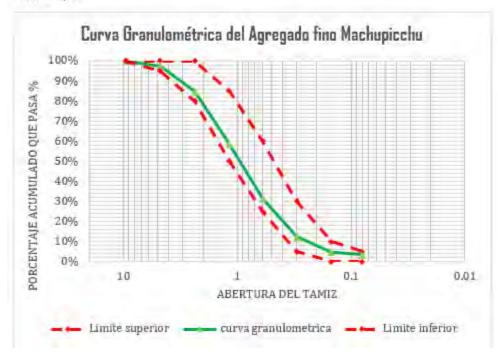
Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de los agregados finos y gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca


Norma: NTP 400,012

Muestra: Agregado fino cantera "Machu Picchu"

ANALISIS GRANULOMETRICO DEL AGRE GADOFINO "Machu Picchu" MTC E 204, NTP 400.012 Peso de la muestra 603,43 T.M. 1/2" T.M.N 3/8"

Tamiz	Abertura (num)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Limite: Grandoméi	
3/8"	9,5	0,84	0,14%	0,14%	99,86%	100%	100%
N° 4	4,75	15,08	2,50%	2,64%	97,36%	95%	100%
Nº 8	2,36	76,58	12,69%	15,33%	84,67%	80%	100%
N° 16	1,18	157,66	26,13%	41,46%	58,54%	50%	85%
N° 30	0,6	162,85	26,99%	68,45%	31,55%	25%	60%
N° 50	0,3	114,69	19,01%	87,46%	12,54%	5%	30%
N° 100	0,15	46,89	7,77%	95,23%	4,77%	0%	10%
N° 200	0,08	8,01	1,33%	96,56%	3,44%	0%	5%
Fondo	15.77	20,83	3,45%	100,00%	0,00%		
TOTAL	Σ	603.43					

$$\begin{split} MF &= \frac{\Sigma\% retenido\ acumulado(3/8" + N^{\circ}4 + N^{\circ}8 + N^{\circ}16 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100}{100} \\ MF &= \frac{0.14\% + 2.64\% + 15.33\% + 41.46\% + 68.45\% + 87.46\% + 95.23\%}{100} \\ MF &= 3.11 \end{split}$$

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Gravedad específica y absorción del agregado fino

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022

GRAVEDAD ESP	ECIFICA Y ABSORCION DE ATTUE 206.	A GREGADOS FINOS - C ATP 400 022	an is ra "Macha Picche"	
f.M. 1/2"				
(MA IR				
Descripcion .		Muestra 01	Muestra 02	Mueswa 03
(A) Vol. Picasmetro (m)		500.00	200 00	300,00
(B) Peso de la muestra seca – Peso recipiente (gr)		616.37	612.03	617.9
(C) Peso recipiente (gr)		123.D	123.04	129
(D) Peso del picnometro – agua tastá imirca (3)		658 00	660.65	66.3
(E) Peso del penomero con				
agua - Peso de la muestra		4764	9701.9-1	99.31
samada con superfice seca				
(F) Peso de la moestra samuda		500 Œ	40002	200.02
con superficie secu	Cal	icules		
(G) Peso de la mues en seca en el homo	B-C	493 /9	494.09	46.00
Grave dad e :p ecifica apareute (g r/cm²)	G (D+F-E)	2.64	2.59	235
Grave dad e :pecifica aparente : sturado (gr/cm3)	F/(D+F-E)	2.68	2.63	2.58
Grave dad expecifica nominal (gricm)	G(D+GE)	2.74	2.68	2.62
Grave dad Especifica Promedio (gr/cm²)	4.5		2.59	
Porcentaje de absorción	(A-G)/G*100	1.38	1.20	1301
Converded Forestifes Description (or on 1)	Water (W. P.) (19.7)		1.26	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios del agregado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017

Muestra: Agregado fino cantera "Machu Picchu"

PESO UNITARIO Y VACIOS DE LOS AGREGADOS - Cantera "Machu Picchu"

The same of the same of	MTC E 203	
T.M.	1/2"	
T.M.N	3/8"	

Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del recipiente (kg)	8	8	8
(V) Volumen del recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del recipiente + muestra suelta (kg)	12,6	12,6	12,6
Cála	los		
(M) Peso de la muestra suelta (kg): G-T	4,6	4,6	4,6
Peso unitario suelto (kg/m³): M/V	1642,86	1642,86	1642,86
Peso unitario suelto promedio (kg/m³)		1642,86	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios del agregado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017

PESO UNITARIO Y VACIOS DE LOS AGR MTC E 20	Section Section 19	Jantera "Mac	hu Picchu				
T.M. 1/2"							
T.MN	3/8"						
Descripción	Muestra 01	Muestra 02	Muestra 03				
Numero de capas	-3	3	3				
Numero de golpes	25	25	25				
(T) Peso del recipiente (kg)	8	8	8				
(V) Volumen del recipiente (m²)	0,0028	0,0028	0,0028				
(G) Peso del recipiente + muestra compactada (kg)	12,9	12,9	12,9				
Cálculos							
(M) Peso de la muestra compactada (kg): G-T	4,9	4,9	4,9				
Peso unitario compactado (kg/m²): M/V	1750	1750	1750				
Peso unitario compactado promedio (kg/m²)		1750					

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total del agregado fino por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339,185

	CONTENIDO DE HUMEDAD DEL AGREGADO F	INO - Cantera "Machu Picchu"
	MTC E 215	
T.M.	1/2"	

T.M.	1/2"
T.M.N	3/8"

Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del recipiente (kg)	122,26	122,26	122,26
(H) Peso de la muestra húmeda + recipiente	2286,38	2286,38	2286,38
(W) Peso de la muestra humeda (gr): H-R	2164,12	2164,12	2164,12
(S) Peso de la muestra seca + recipiente (gr)	2250,82	2250,82	2250,82
(D) Peso de la muestra seca (gr): S-R	2128,56	2128,56	2128,56
	Cálc ulos		
% de humedad del agregado fino: (W-D)/D*100	1,67	1,67	1,67
% de humedad promedio del agregado fino		1,67	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material fino que pasa el tamiz N°200 por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,018

CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ Nº200 POR LAVADO - Cantera "Machu Picchu"								
MTC E 202, NTP 400.018								
T.M.	1/2"							
T.M.N	3/8"							
D escripción	Muestra 01	Muestra 02	Muestra 03					
(R) Peso del recipiente (kg)	122,26	122,26	122,26					
(H) Peso de la muestra húmeda + recipiente antes de lavado	2250,82	2250,82	2250,82					
(W) Peso de la muestra húmeda antes de lavado(gr): H-R	2128,56	2128,56	2128,56					
(S) Peso de la muestra seca + recipiente después de lavado (gr)	2232,42	2232,42	2232,42					

(S) Peso de la muestra seca + recipiente después de lavado (gr)	2232,42	2232,42	2232,42			
(D) Peso de la muestra seca después de lavado (gr): S-R	2110,16	2110,16	2110,16			
Cálculos						
% de material fino que pasa el tamiz N°200: (W-D)/W*100	0,87	0,87	0,87			
% promedio de material fino que pasa el tamiz N°200		0,87				

Anexo d2: Análisis granulométrico agregado grueso

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

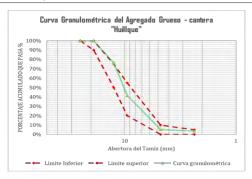
Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de agregados gruesos y finos

Tesistas: Rudyard Nicolay Araujo Mamani


Jhersson Valentin Sullca Baca

Norma: NTP 400,012, MTC E 204

Muestra: Agregado grueso cantera "Huillque"

	ANALISI	S GRANULO		L AGREGAI NTP 400.012	DO GRUESO "	Huillque''
Peso de la m	uestra	1010,31				
T.M.		3/4"				
T.M.N		1/2"				
Tamiz	Abertura (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Huso 67

Tamiz	Abertura (mm)	Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Huso 6	7
1"	25,00	0	0,00%	0,00%	100,00%	100%	100%
3/4"	19,00	0	0,00%	0,00%	100,00%	90%	100%
1/2"	12,5	240,41	23,8%	23,8%	76,20%	50%	75%
3/8"	9,50	350,03	34,65%	58,45%	41,55%	20%	55%
N° 4	4,75	365,86	36,21%	94,66%	5,34%	0%	10%
N° 8	2,36	19,22	1,90%	96,56%	3,44%	0%	5%
Fondo		34,75	3,44%	100,00%	0,00%		
TOTAL	Σ	1010,27					

 $MF = \frac{5 \% \text{ Retenido acumulado}(3" + 1 \frac{1}{2}" + \frac{3}{4}" + \frac{3}{8}" + N^{\circ}4 + N^{\circ}8 + N^{\circ}16 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100)}{100}$

 $MF = \frac{(0\% + 0\% + 0\% + 58,45\% + 94,66\% + 96,56\% + 96,56\% + 96,56\% + 96,56\% + 96,56\%)}{100}X100$

MF = 6,26

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

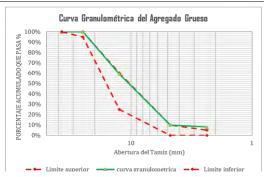
LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de agregados gruesos y finos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,012, MTC E 204


Muestra: Agregado grueso cantera "Pisac"

ANALISIS GRANULOMETRICO DEL AGREGADO GRUESO "Pisac"

MTC E 204

Peso de la muestra	917,42
T.M.	3/4"
T.M.N	1/2"

Tamiz	Abertura (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Hus	o 57
1 1/2"	37,5	0	0,00%	0,00%	100,00%	100%	100%
1"	25	0	0,00%	0,00%	100,00%	95%	100%
3/4"	19	0	0,00%	0,00%	100,00%	~~	~~
1/2"	12,5	373,95	40,81%	40,81%	59,19%	25%	60%
3/8"	9,5	237,18	25,89%	66,70%	33,30%	~~	~~
N° 4	4,75	213,26	23,28%	89,98%	10,02%	0%	10%
N° 8	2,36	19,17	2,09%	92,07%	7,93%	0%	5%
Fondo		72,7	7,93%	100,00%	0,00%		
TOTAL	Σ	916,26					

$$\begin{split} MF &= \frac{\Sigma \,\% \,\text{Retenido acumulado}(3"+1\,1/2"+3/4"+3/8"+N^\circ 4+N^\circ 8+N^\circ 16+N^\circ 30+N^\circ 50+N^\circ 100)}{100} \\ MF &= \frac{(0\%+0\%+0\%+66,70\%+89,98\%+92,07\%+92,07\%+92,07\%+92,07\%+92,07\%)}{100} X100 \end{split}$$

MF = 6.17

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

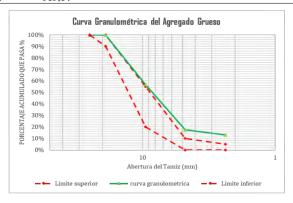
Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de agregados gruesos y finos

Tesistas: Rudyard Nicolay Araujo Mamani


Jhersson Valentin Sullca Baca

Norma: NTP 400,012, MTC E 204

Muestra: Agregado grueso cantera "Quiquijana"

ANALISIS GRANULOMETRICO DEL AGREGADO GRUESO "Quiquijana"				
	MTC E 204			
Peso de la muestra	970,12			
T.M.	3/4"			
T.M.N	1/2"			

Tamiz	Abertura (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Hus	o 67
1 1/2"	37,5	0	0,00%	0,00%	100,00%	~~	~~
1"	25	0	0,00%	0,00%	100,00%	100%	100%
3/4"	19	0	0,00%	0,00%	100,00%	90%	100%
1/2"	12,5	215,86	22,26%	22,26%	77,74%	~~	~~
3/8"	9,5	202,66	20,90%	43,16%	56,84%	20%	55%
N° 4	4,75	382,85	39,48%	82,64%	17,36%	0%	10%
N° 8	2,36	42,97	4,43%	87,07%	12,93%	0%	5%
Fondo		125,3	12,93%	100,00%	0,00%		
TOTAL	Σ	969,64	•	•			

$$MF = \frac{\Sigma \% \text{ Retenido acumulado}(3" + 1 \frac{1}{2}" + \frac{3}{4}" + \frac{3}{8}" + \text{N}^{\circ}4 + \text{N}^{\circ}8 + \text{N}^{\circ}16 + \text{N}^{\circ}30 + \text{N}^{\circ}50 + \text{N}^{\circ}100)}{100}$$

$$MF = \frac{(0\% + 0\% + 0\% + 43,16\% + 82,64\% + 87,07\% + 87,07\% + 87,07\% + 87,07\% + 87,07\%)}{100}X100$$

$$MF = 5,61$$

CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

"ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO Tesis:

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de agregados gruesos y finos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,012, MTC E 204

Agregado grueso cantera "Vicho" Muestra:

ANA	LISIS GRANULO	METRICO DEL AGREGADO GRUESO "Vicho"
		MTC E 204
Peso de la muestra	806,12	
T.M.	3/4"	

1 cso de la muestra	000,12
T.M.	3/4"
T.M.N	1/2"

Tamiz	Abertura (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Hus	o 67
1 1/2"	37,5	0	0,00%	0,00%	100,00%	~~	~~
1"	25	0	0,00%	0,00%	100,00%	100%	100%
3/4"	19	0	0,00%	0,00%	100,00%	90%	100%
1/2"	12,5	343,46	42,67%	42,67%	57,33%	~~	~~
3/8"	9,5	284,49	35,34%	78,01%	21,99%	20%	55%
N° 4	4,75	152,81	18,98%	96,99%	3,01%	0%	10%
N° 8	2,36	0,75	0,09%	97,08%	2,92%	0%	5%
Fondo		23,41	2,92%	100,00%	0,00%		
TOTAL	Σ	804,92					

$$MF = \frac{\Sigma \text{ }\% \text{ } \text{Retenido acumulado} (3"+1\ 1/2"+3/4"+\ 3/8"+N^\circ 4+N^\circ 8+N^\circ 16+N^\circ 30+N^\circ 50+N^\circ 100)}{100}$$

$$MF = \frac{(0\% + 0\% + 0\% + 78,01\% + 96,99\% + 97,08\% + 97,08\% + 97,08\% + 97,08\% + 97,08\%)}{100}X100$$

MF = 6,60

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

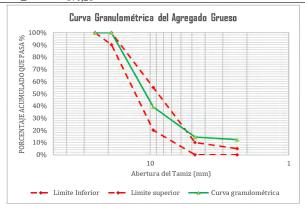
PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Análisis granulometrico de agregados gruesos y finos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca


Norma: NTP 400,012, MTC E 204

Muestra: Agregado grueso cantera "Zurite"

ANA	LISIS GRANULO	OMETRICO DEL AGREGADO GRUESO "Zurite"
		MTC E 204
Dana da la morrantona	971 25	

r eso de la muestra	0/1,33
T.M.	3/4"
TMN	1/2"

Tamiz	Abertura (mm)	Peso Retenido (gr.)	% Retenido	% Retenido acumulado	% Acumulado que pasa	Hus	o 67
1"	25	0	0,00%	0,00%	100,00%	100%	100%
3/4"	19	0	0,00%	0,00%	100,00%	90%	100%
1/2"	12,5	293,45	33,68%	33,68%	66,32%	~~	~~
3/8"	9,5	237,18	27,22%	60,90%	39,10%	20%	55%
N° 4	4,75	213,26	24,48%	85,38%	14,62%	0%	10%
N° 8	2,36	19,17	2,20%	87,58%	12,42%	0%	5%
Fondo		108,22	12,42%	100,00%	0,00%		
TOTAL	$oldsymbol{\Sigma}$	871,28					

$$MF = \frac{\Sigma \text{ }\% \text{ } \text{Retenido acumulado} (3" + 1\ 1/2" + 3/4" + \ 3/4" + \ 3/8" + \ N^{\circ}4 + \ N^{\circ}8 + \ N^{\circ}16 + \ N^{\circ}30 + \ N^{\circ}50 + \ N^{\circ}100)}{100}$$

$$MF = \frac{(0\% + 0\% + 0\% + 60,90\% + 85,38\% + 87,58\% + 87,58\% + 87,58\% + 87,58\% + 87,58\%)}{100}X100$$

MF = 5.84

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso específico y absorción de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022, MTC E 206

Muestra: Agregado grueso cantera "Huillque"

Comparación de los resultados de laboratorio del agregado grueso						
	MTC E 206, NTP 400.022	<u> </u>				
T.M.	3/4"					
T.M.N	1/2"					
	Descripción	Muestra 01	Muestra 02	Muestra 03		
(A) Peso de mu	estra seca al horno (gr.)	2168,99	2165,45	2245,25		
(B) Peso de la n	nuestra Saturada superficialmente seca (SSS) (gr.)	2208,54	2205,24	2286,63		
(C) Peso sumerg	gido de la muestra SSS (gr.)	1366,60	1370,56	1415,12		
	Calculos					
Peso específico	de masa: A/(B-C)	2,58	2,59	2,58		
Peso especifico	de masa saturada con superficie seca: B/(B-C)	2,62	2,64	2,62		
Peso específico	aparente: A/(A-C)	2,70	2,72	2,70		
Promedio Peso	especifico de masa		2,58			
Promedio Peso	especifico de masa SSS		2,63			
Promedio peso	especifico aparente		2,71			
absorción del ag	regado grueso: (B-A)/A *100	1,82%	1,84%	1,84%		
Absorción del a	agregado grueso promedio		1,83%			

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso específico y absorción de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022, MTC E 206

Muestra: Agregado grueso cantera "Pisac"

PESO ES	PECIFICO Y ABSORCION DE AGREGADO		S - Cantera '	'Pisac''
	MTC E 206, NTP 400.022	?		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso de mu	estra seca al horno (gr.)	2245,86	2675,32	2512,31
(B) Peso de la n	nuestra Saturada superficialmente seca (SSS) (gr.)	2274,10	2709,15	2543,68
(C) Peso sumer	gido de la muestra SSS (gr.)	1405,70	1668,95	1578,51
	Calculos			
Peso específico	de masa: A/(B-C)	2,59	2,57	2,60
Peso especifico	de masa saturada con superficie seca: B/(B-C)	2,62	2,60	2,64
Peso específico	aparente: A/(A-C)	2,67	2,66	2,69
Promedio Peso	especifico de masa		2,59	
Promedio Peso	especifico de masa SSS		2,62	
Promedio peso	especifico aparente		2,67	
absorción del ag	regado grueso: (B-A)/A*100	1,26%	1,26%	1,25%
Absorción del a	agregado grueso promedio		1,26%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso específico y absorción de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022, MTC E 206

Muestra: Agregado grueso cantera "Quiqujana"

PESO ESPEC	CIFICO Y ABSORCION DE AGREGADOS G MTC E 206, NTP 400.022		Cantera "Qı	ıiquijan a''
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso de mue	estra seca al homo (gr.)	2634,52	2434,27	2484,31
(B) Peso de la m	uestra Saturada superficialmente seca (SSS) (gr.)	2689,82	2485,53	2537,15
(C) Peso sumerg	tido de la muestra SSS (gr.)	1652,37	1524,2	1550,78
	Calculos			
Peso específico	de masa: A/(B-C)	2,54	2,53	2,52
Peso especifico o	de masa saturada con superficie seca: B/(B-C)	2,59	2,59	2,57
Peso específico a	aparente: A/(A-C)	2,68	2,67	2,66
Promedio Peso	especifico de masa		2,53	
Promedio Peso	especifico de masa SSS		2,58	
Promedio peso	especifico aparente		2,67	
absorción del agr	regado grueso: (B-A)/A*100	2,10%	2,11%	2,13%
Absorción del a	gregado grueso promedio		2,11%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso específico y absorción de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022, MTC E 206

Muestra: Agregado grueso cantera "Vicho"

PESO ESI	PECIFICO Y ABSORCION DE AGREGADOS MTC E 206, NTP 400.022		- Cantera '	'Vicho''
T.M.	3/4"	<u> </u>		
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso de mu	estra seca al horno (gr.)	2718,13	2492,67	2630,94
(B) Peso de la n	nuestra Saturada superficialmente seca (SSS) (gr.)	2751,82	2523,74	2663,62
(C) Peso sum erg	gido de la muestra SSS (gr.)	1678,94	1546,45	1626,6
	Calculos			
Peso específico	de masa: A/(B-C)	2,53	2,55	2,54
Peso especifico	de masa saturada con superficie seca: B/(B-C)	2,56	2,58	2,57
Peso específico	aparente: A/(A-C)	2,62	2,63	2,62
Promedio Peso	especifico de masa		2,54	
Promedio Peso	especifico de masa SSS		2,57	
Promedio peso	especifico aparente		2,62	
absorción del ag	regado grueso: (B-A)/A*100	1,24%	1,25%	1,24%
Absorción del a	ngregado grueso promedio		1,24%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso específico y absorción de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,022, MTC E 206

Muestra: Agregado grueso cantera "Zurite"

PESO ESPECIFICO Y ABSORCION DE AGREGADOS GRUESOS - Cantera "Zurite" MTC E 206, NTP 400.022				
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso de mues	stra seca al horno (gr.)	2071,11	2062,12	2050,89
(B) Peso de la mi	uestra Saturada superficialmente seca (SSS) (gr.)	2122,66	2110,12	2105,42
(C) Peso sumergi	do de la muestra SSS (gr.)	1306,80	1307,53	1295,26
	Calculos			
Peso específico d	e masa: <i>A</i> /(<i>B-C</i>)	2,54	2,57	2,53
Peso especifico d	e masa saturada con superficie seca: B/(B-C)	2,60	2,63	2,60
Peso específico a	parente: A/(A-C)	2,71	2,73	2,71
Promedio Peso	especifico de masa		2,55	
Promedio Peso	especifico de masa SSS		2,61	
Promedio peso o	especifico aparente		2,72	
absorción del agre	egado grueso: (B-A)/A*100	2,49%	2,33%	2,66%
Absorción del ag	gregado grueso promedio		2,49%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios de los agregados

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017; MTC E 203

Muestra: Agregado grueso cantera "Huillque"

P	ESO UNITARIO Y VACIOS DE LOS A	GREGADOS - Cantera	"Huillque"	
	MTC E 2	03		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del recip	piente (kg)	8	8	8
(V) Volumen del	recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del recip	piente + muestra suelta (kg)	11,9	11,9	11,9
•	Calculo	os.		
(M) Peso de la m	uestra suelta (kg): G-T	3,9	3,9	3,9
Peso unitario suel	to (kg/m³): M /V	1392,86	1392,86	1392,86
	Peso unitario suelto promedio (kg/m³)		1392,86	
	ESO UNITARIO Y VACIOS DE LOS A	GREGADOS - Cantera	"Huillque"	
	MTC E 2	03		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
Numero de capas		3	3	3
Numero de golpes	:	25	25	25
(T) Peso del recip		8	8	8
(V) Volumen del 1		0,0028	0,0028	0,0028
(G) Peso del recip	piente + muestra compactada (kg)	12,6	12,5	12,5
(M) Peso de la mi	Calculos uestra compactada (kg): G-T	4.6	4,5	4,5
. ,	pactado (kg/m³): M/V	1642.86	1607,14	1607,14
	mpactado promedio (kg/m³)	10.2,00	1619,05	1007,11
P]	ESO UNITARIO Y VACIOS DE LOS A	GREGADOS - Cantera	"Huillque"	
	MTC E 2	103	-	
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso especific	co aparente	2,71	2,71	2,71
(B) Peso unitario	del agregado grueso (kg/m³)	1642,86	1607,14	1607,14
(W) Densidad del		998	998	998
	Calculo	s		
Porcentaje de vac	ios: ((A*W)-B)/(A*W)*100	39%	41%	41%
Promedio porce	ntaje de vacios de los agregados		40%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios de los agregados

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017; MTC E 203

Muestra: Agregado grueso cantera "Pisac"

	PESO UNITARIO Y VACIOS DE LOS AGR	REGADOS - Cantei	ra "Pisac"	
T.M.	MTC E 203			
T.M.N	1/2"			
1.101.10				
	Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del recip	piente (kg)	8	8	8
(V) Volumen del	recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del recip	piente + muestra suelta (kg)	12	12	11,9
	Calculos			
(M) Peso de la m	uestra suelta (kg): G-T	4	4	3,9
Peso unitario sue	lto (kg/m³): <i>M/V</i>	1428,57	1428,57	1392,86
Peso unitario suelto promedio (kg/m³)			1416,67	
	PESO UNITARIO Y VACIOS DE LOS AGE	REGADOS - Canter	ra "Pisac"	
	MTC E 203			
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 0.
Numero de capas	1	3	3	3
Numero de golpe	s	25	25	25
(T) Peso del recip	piente (kg)	8	8	8
(V) Volumen del	recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del recip	piente + muestra compactada (kg)	12,5	12,4	12,4
	Calculos			
(M) Peso de la m	uestra compactada (kg): G-T	4,5	4,4	4,4
Peso unitario con	npactado (kg/m³): M/V	1607,14	1571,43	1571,43
Peso unitario co	mpactado promedio (kg/m³)		1583,33	
	PESO UNITARIO Y VACIOS DE LOS AGE	REGADOS - Canter	a "Pisac"	
	MTC E 203			
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 0.
(A) Peso especific	co aparente	2,67	2,67	2,67
(B) Peso unitario	ompactado del agregado grueso (kg/m³)	1607,14	1571,43	1571,43
(W) Densidad del	agua (kg/m³)	998	998	998
	Calculos			
Porcentaje de vac	cios: ((A*W)-B)/(A*W)*100	40%	41%	41%
D 11	ntaje de vacios de los agregados		41%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios de los agregados

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017; MTC E 203

Muestra: Agregado grueso cantera "Quiquijana"

stra:	Agregado grueso cantera "Quiquijana	a"		
	PESO UNITARIO Y VACIOS DE LOS AGREC	GADOS - Cantera	"Quiquijana"	1
T.M.	3/4"			
T.M.N	1/2"			
1.101.10		Muestra 01	Muestra 02	Muestra 03
	Descripción	Muesira 01	Muestra 02	Muestra 03
(T) Peso del	recipiente (kg)	8	8	8
(V) Volumer	n del recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del	G) Peso del recipiente + muestra suelta (kg)		12,6	12,5
	Calculos			
(M) Peso de	la muestra suelta (kg): G-T	4,7	4,6	4,5
Peso unitario	suelto (kg/m³): M/V	1678,57	1642,86	1607,14
Peso unitario suelto promedio (kg/m³)			1642,86	
	PESO UNITARIO Y VACIOS DE LOS AGREG	ADOS - Cantera '	'Quiquijana''	
	MTC E 203			
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
Numero de c	apas	3	3	3
Numero de g	golpes	25	25	25
(T) Peso del	recipiente (kg)	8	8	8
(V) Volumen	del recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del	recipiente + muestra compactada (kg)	12,7	12,7	12,6
	Calculos			
(M) Peso de	la muestra compactada (kg): G-T	4,7	4,7	4,6
Peso unitario	compactado (kg/m³): M/V	1678,57	1678,57	1642,86
Peso unitari	io compactado promedio (kg/m³)		1666,67	
-	PESO UNITARIO Y VACIOS DE LOS AGREC	SADOS - Cantera	"Quiquijana"	
T 16	MTC E 203			
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso esp	pecifico aparente	2,67	2,67	2,67
(B) Peso uni	itario ompactado del agregado grueso (kg/m³)	1678,57	1678,57	1642,86
(W) Densida	ad del agua (kg/m³)	998	998	998
	Calculos			
Porcentaje d	le vacios: ((A*W)-B)/(A*W)*100	37%	37%	38%
Promedio p	orcentaje de vacios de los agregados		37%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios de los agregados

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017; MTC E 203

Muestra: Agregado grueso cantera "Vicho"

	Agregado grueso cantera "Vicho"	DECADOS Contro	- UX72-1U	
	PESO UNITARIO Y VACIOS DE LOS AGI MTC E 203	REGADOS - Canter	a "vicno"	
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del reci	piente (kg)	8	8	8
(V) Volumen del	recipiente (m³)	0,0028	0,0028	0,0028
(G) Peso del reci	piente + muestra suelta (kg)	12,3	12,2	12,2
	Calculos			
(M) Peso de la m	nuestra suelta (kg): G-T	4,3	4,2	4,2
Peso unitario suelto (kg/m³): M/V		1535,71	1500,00	1500,00
Peso unitario suelto promedio (kg/m³)			1511,90	
	PESO UNITARIO Y VACIOS DE LOS AGE MTC E 203	REGADOS - Canter	a "Vicho"	
T.M.	3/4"			
T.M.N	1/2"			
1.171.17	Descripción	Muestra 01	Muestra 02	Muestra 03
Numero de capas	3	3	3	3
Numero de golpe		25	25	25
(T) Peso del recip		8	8	8
(V) Volumen del		0,0028	0,0028	0,0028
	piente + muestra compactada (kg)	12,6	12,6	12,7
	Calculos	,-	7-	
(M) Peso de la m	uestra compactada (kg): G-T	4,6	4,6	4,7
	npactado (kg/m³): M/V	1642,86	1642,86	1678,57
	mpactado promedio (kg/m³)	,,,,	1654,76	
	PESO UNITARIO Y VACIOS DE LOS AGE	REGADOS - Canter		
	MTC E 203			
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(A) Peso especific	co aparente	2,62	2,62	2,62
(B) Peso unitario	ompactado del agregado grueso (kg/m3)	1642,86	1642,86	1678,57
(W) Densidad del	l agua (kg/m³)	998	998	998
	Calculos			
Porcentaje de vac	cios: ((A*W)-B)/(A*W)*100	37%	37%	36%
Promedio porce	ntaje de vacios de los agregados		37%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Peso unitario y vacios de los agregados

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400,017; MTC E 203

Muestra: Agregado grueso cantera "Zurite"

	PESO UNITARIO Y VACIOS DE LO	S AGREGADOS - Canter	a "Zurite"	
T.M.	3/4"	£ 203		
T.M.N	1/2"			
1.111.11	Descripción	Muestra 01	Muestra 02	Muestra 03
(T) Peso del recip	iente (kg)	8	8	8
(V) Volumen del i		0,0028	0,0028	0,0028
` '	piente + muestra suelta (kg)	11,8	11,9	12
(S) I est dell'est	Calci		11,5	
(M) Peso de la m	uestra suelta (kg): G-T	3,8	3,9	4
Peso unitario suel		1357,14	1392,86	1428,57
	elto promedio (kg/m³)		1392,86	,- /
	PESO UNITARIO Y VACIOS DE LO	S AGREGADOS - Canters		
	MTC E	E 203		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
Numero de capas		3	3	3
Numero de golpes	3	25	25	25
(T) Peso del recip	iente (kg)	8	8	8
(V) Volumen del i		0,0028	0,0028	0,0028
	piente + muestra compactada (kg)	12,7	12,6	12,5
•	Calcı	ılos		
(M) Peso de la m	uestra compactada (kg): G-T	4,7	4,6	4,5
Peso unitario com	pactado (kg/m³): M/V	1678,57	1642,86	1607,14
Peso unitario con	mpactado promedio (kg/m³)		1642,86	
	PESO UNITARIO Y VACIOS DE LO			
	MTC I	E 203		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 0.
(A) Peso especific	co aparente	2,72	2,72	2,72
(B) Peso unitario	del agregado grueso (kg/m³)	1678,57	1642,86	1607,14
(W) Densidad del		998	998	998
	Calc	ulos		
Porcentaje de vac	cios: ((A*W)-B)/(A*W)*100	38%	39%	41%
Promedio norce	ntaje de vacios de los agregados		39%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total de los agregados por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339,185; MTC E 215

Muestra: Agregado grueso cantera "Huillque"

CON	CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO - Cantera "Huillque"				
	MTC E 215, NTP	339.185			
T.M.	3/4"				
T.M.N	1/2"				
	Descripción	Muestra 01	Muestra 02	Muestra 03	
(R) Peso del recip	piente (gr)	276,79	276,79	276,79	
(H) Peso de la mi	(H) Peso de la muestra húmeda + recipiente (gr)		2452,35	2514,36	
(W) Peso de la m	uestra húmeda (gr): H-R	2023,7	2175,56	2237,57	
(S) Peso de la mu	iestra seca + recipiente (gr)	2282,9	2433,04	2495,12	
(D) Peso de la m	uestra seca (gr): S-R	2006,11	2156,25	2218,33	
	Calculos				
% de humedad de	el agregado grueso: (W-D)/D*100	0,88%	0,90%	0,87%	
% de humedad j	promedio del agregado grueso		0,88%		

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total de los agregados por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.185; MTC E 215

Muestra: Agregado grueso cantera "Pisac"

CC	CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO - Cantera "Pisac"					
	MTC E 215, NTP	339.185				
T.M.	3/4"					
T.M.N	1/2"					
	Descripción	Muestra 01	Muestra 02	Muestra 03		
(R) Peso del recip	piente (gr)	137,74	127,02	157,76		
(H) Peso de la muestra húmeda + recipiente (gr)		2401,65	2303,11	2241,85		
(W) Peso de la m	uestra húmeda (gr): <i>H-R</i>	2263,91	2176,09	2084,09		
(S) Peso de la mu	iestra seca + recipiente (gr)	2396,59	2297,86	2237,05		
(D) Peso de la mi	uestra seca (gr): S-R	2258,85	2170,84	2079,29		
	Calculos					
% de humedad de	el agregado grueso: (W-D)/D*100	0,22%	0,24%	0,23%		
% de humedad j	promedio del agregado grueso		0,24%			

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total de los agregados por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.185; MTC E 215

Muestra: Agregado grueso cantera "Quiquijana"

CON	CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO - Cantera "Quiquijana"					
	MTC E 215, NTP	339.185				
T.M.	3/4"					
T.M.N	1/2"					
	Descripción	Muestra 01	Muestra 02	Muestra 03		
(R) Peso del recip	piente (gr)	127,02	131,54	167,85		
(H) Peso de la m	uestra húmeda + recipiente (gr)	2643,8	2573,39	2814,97		
(W) Peso de la m	ruestra húmeda (gr): <i>H-R</i>	2516,78	2441,85	2647,12		
(S) Peso de la mu	ıestra seca + recipiente (gr)	2601,66	2532,28	2770,84		
(D) Peso de la m	uestra seca (gr): S-R	2474,64	2400,74	2602,99		
	Calculos					
% de humedad de	el agregado grueso: (W-D)/D*100	1,70%	1,71%	1,70%		
% de humedad j	promedio del agregado grueso		1,70%			

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total de los agregados por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.185; MTC E 215

Muestra: Agregado grueso cantera "Vicho"

CC	CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO - Cantera "Vicho"				
	MTC E 215, NTP	339.185			
T.M.	3/4"				
T.M.N	1/2"				
	Descripción	Muestra 01	Muestra 02	Muestra 03	
(R) Peso del reci	piente (gr)	127,42	112,69	137,42	
(H) Peso de la m	uestra húmeda + recipiente (gr)	2351,24	2375,18	2402,84	
(W) Peso de la m	nuestra húmeda (gr): H-R	2223,82	2262,49	2265,42	
(S) Peso de la mi	uestra seca + recipiente (gr)	2344,15	2368,47	2396,21	
(D) Peso de la m	uestra seca (gr): S-R	2216,73	2255,78	2258,79	
	Calculos				
% de humedad d	el agregado grueso: (W-D)/D*100	0,32%	0,30%	0,29%	
% de humedad	promedio del agregado grueso		0,30%		

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Contenido de humedad total de los agregados por secado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.185; MTC E 215

Muestra: Agregado grueso cantera "Zurite"

CO	ONTENIDO DE HUMEDAD DEL AGREG MTC E 215, NTP		icia Zuitic	
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del recip	piente (gr)	177,21	184,21	195,45
(H) Peso de la m	(H) Peso de la muestra húmeda + recipiente (gr)		1752,23	1761,78
(W) Peso de la m	uestra húmeda (gr): H-R	1587,94	1568,02	1566,33
(S) Peso de la mu	uestra seca + recipiente (gr)	1748,06	1735,47	1744,84
(D) Peso de la m	uestra seca (gr): S-R	1570,85	1551,26	1549,39
	Calculos			
% de humedad de	el agregado grueso: (W-D)/D*100	1,09%	1,08%	1,09%
% de humedad	promedio del agregado grueso		1,09%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Abrasión Los Angeles al desgaste de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.019; MTC E 207

Muestra: Agregado grueso cantera "Huillque"

	Abrasion Los Angeles, desgaste de	el agregado gruees	so - Cantera '	'Huillque''	
	MTC E 2	07, NTP 400.019			
T.M.	3/4"	Gradación		C	
T.M.N	1/2"	Revoluciones		500	
		N° esferas		8	
	Descripción		Muestra 01	Muestra 02	Muestra 03
(Pi) Peso del mat	erial inicial seco		5001,21	5002,45	5002,12
(Pf) Peso del ma	terial final despues del ensayo		3833,37	3868,98	3799,37
	•	Calculos			
Pérdida de peso 1	oor desgaste: <i>Pi-Pf</i>		1167,84	1133,47	1202,75
Procentaje de pér	rdida por desgaste del agregado grues	so: <i>(Pi-Pf)/Pi*100</i>	23,35%	22,66%	24,04%
Porcentaje de pe	érdida por desgaste promedio			23,35%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Abrasión Los Angeles al desgaste de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.019; MTC E 207

Muestra: Agregado grueso cantera "Pisac"

	Abrasion Los Angeles, des	sgaste del agregado grue	eso - Cantera	"Pisac"	
	M	TC E 207, NTP 400.019			
T.M.	3/4"	Gradación		C	
T.M.N	1/2"	Revoluciones		500	
		N° esferas		8	
	Descripción		Muestra 01	Muestra 02	Muestra 03
(Pi) Peso del mat	erial inicial seco		5004,23	5001,41	5000,13
(Pf) Peso del mat	terial final despues del ensayo		3642,15	3588,47	3672,06
		Calculos			
Pérdida de peso 1	oor desgaste: <i>Pi-Pf</i>		1362,08	1412,94	1328,07
Procentaje de pér	rdida por desgaste del agregado	o grueso: (Pi-Pf)/Pi*100	27,22%	28,25%	26,56%
Porcentaje de pe	érdida por desgaste promedi	io		27,34%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Abrasión Los Angeles al desgaste de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.019; MTC E 207

Muestra: Agregado grueso cantera "Quiquijana"

	Abrasion Los Angeles, desgaste de		- Cantera "(Quiquijana''	
		207, NTP 400.019			
T.M.	3/4"	Gradación		C	
T.M.N	1/2"	Revoluciones		500	
		N° esferas		8	
	Descripción		Muestra 01	Muestra 02	Muestra 03
(Pi) Peso del ma	terial inicial seco		4999,81	5004,75	5000,72
(Pf) Peso del ma	terial final despues del ensayo		3497,25	3352,81	3487,98
		Calculos			
Pérdida de peso	por desgaste: <i>Pi-Pf</i>		1502,56	1651,94	1512,74
Procentaje de pé	rdida por desgaste del agregado grue	eso: (Pi-Pf)/Pi*100	30,05%	33,01%	30,25%
Porcentaje de p	érdida por desgaste promedio			31,10%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Abrasión Los Angeles al desgaste de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.019; MTC E 207

Muestra: Agregado grueso cantera "Vicho"

	Abrasion Los Angeles, de	esgaste del agregado grue	eso - Cantera	"Vicho"	
	Λ	MTC E 207, NTP 400.019			
T.M.	3/4"	Gradación		C	
T.M.N	1/2"	Revoluciones		500	
		N° esferas		8	
	Descripción		Muestra 01	Muestra 02	Muestra 03
(Pi) Peso del mat	erial inicial seco		4999,86	5001,23	5000,05
(Pf) Peso del mat	terial final despues del ensay	0	3629,38	3588,47	3672,06
		Calculos			
Pérdida de peso p	oor desgaste: Pi-Pf		1370,48	1412,76	1327,99
Procentaje de pér	rdida por desgaste del agrega	do grueso: (Pi-Pf)/Pi*100	27,41%	28,25%	26,56%
Porcentaje de pe	érdida por desgaste prome	dio		27,41%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Abrasión Los Angeles al desgaste de los agregados gruesos

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.019; MTC E 207

Muestra: Agregado grueso cantera "Zurite"

	Abrasion Los Angeles, desgast	te del agregado grue	eso - Cantera	"Zurite"	
	MTC I	E 207, NTP 400.019			
T.M.	3/4"	Gradación		C	
T.M.N	1/2"	Revoluciones		500	
		N° esferas		8	
	Descripción		Muestra 01	Muestra 02	Muestra 03
(Pi) Peso del ma	aterial inicial seco		5001,7	5000,47	4999,86
(Pf) Peso del ma	aterial final despues del ensayo		3555,57	3541,45	3570,14
		Calculos			
Pérdida de peso	por desgaste: Pi-Pf		1446,13	1459,02	1429,72
Procentaje de pe	érdida por desgaste del agregado gra	ueso: (Pi-Pf)/Pi*100	28,91%	29,18%	28,60%
Porcentaje de p	pérdida por desgaste promedio			28,90%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material que pasa el tamiz de 75 um por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.018; MTC E 202

Muestra: Agregado grueso cantera "Huillque"

T.M.	MTC E 202, NTP 400.0			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del recip	piente (gr)	277,04	277,04	277,04
(W) Peso de la muestra seca + recipiente antes del lavado (gr)		2564,22	2589,65	2654,26
(B) Peso de la mu	iestra seca antes del lavado (gr): W-R	2287,18	2312,61	2377,22
(L) Peso de la mu	iestra seca + recipiente despues del lavado (gr)	2529,89	2554,84	2619,45
(C) Peso de la mi	iestra seca despues del lavado (gr): L-R	2252,85	2277,8	2342,41
	Calculos			
% de material fine	o que pasa el tamiz N°200: (B-C)/B*100	1,50%	1,51%	1,46%
% promedio de	material fino que pasa el tamiz Nº200		1,49%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material que pasa el tamiz de 75 um por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.018; MTC E 202

Muestra: Agregado grueso cantera "Pisac"

CANTIDAD I	DE MATERIAL FINO QUE PASA EL TAMIZ N	N° 200 POR LAV	ADO - Cante	era "Pisac"
	MTC E 202, NTP 400.0	18		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del recip	piente (gr)	141,35	126,95	157,76
(W) Peso de la m	nuestra seca + recipiente antes del lavado (gr)	2641,57	2945,65	2351,78
(B) Peso de la m	uestra seca antes del lavado (gr): W-R	2500,22	2818,7	2194,02
(L) Peso de la m	uestra seca + recipiente despues del lavado (gr)	2619,05	2921,21	2333,48
(C) Peso de la m	uestra seca despues del lavado (gr): <i>L-R</i>	2477,7	2794,26	2175,72
	Calculos			
% de material fin	o que pasa el tamiz N°200: (B-C)/B*100	0,90%	0,87%	0,83%
% promedio de	material fino que pasa el tamiz Nº200		0,87%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material que pasa el tamiz de 75 um por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.018; MTC E 202

Muestra: Agregado grueso cantera "Quiquijana"

CANTIDAD DE	MATERIAL FINO QUE PASA EL TAMIZ Nº	200 POR LAVA	DO - Cantera	"Quiquijana
	MTC E 202, NTP 400.	018		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del recip	piente (gr)	294,23	277,04	265,49
(W) Peso de la m	uestra seca + recipiente antes del lavado (gr)	2694,13	2872,04	2423,72
(B) Peso de la m	uestra seca antes del lavado (gr): W-R	2399,9	2595	2158,23
(L) Peso de la mi	uestra seca + recipiente despues del lavado (gr)	2604,56	2774,05	2368,85
(C) Peso de la m	uestra seca despues del lavado (gr): <i>L-R</i>	2310,33	2497,01	2080,24
	Calculos			
% de material fin	o que pasa el tamiz N°200: (B-C)/B*100	3,73%	3,78%	3,75%
% promedio de	material fino que pasa el tamiz N°200		3,75%	

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material que pasa el tamiz de 75 um por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.018; MTC E 202

Muestra: Agregado grueso cantera "Vicho"

CANTIDAD D	DE MATERIAL FINO QUE PASA EL TAMIZ N	° 200 POR LAV	ADO - Cante	ra "Vicho"
	MTC E 202, NTP 400.0	18		
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del reci	piente (gr)	142,56	122,51	112,52
(W) Peso de la m	nuestra seca + recipiente antes del lavado (gr)	2785,91	2542,17	2389,94
(B) Peso de la m	uestra seca antes del lavado (gr): W-R	2643,35	2419,66	2277,42
(L) Peso de la m	uestra seca + recipiente despues del lavado (gr)	2762,24	2519,47	2368,85
(C) Peso de la m	uestra seca despues del lavado (gr): <i>L-R</i>	2618,53	2396,96	2256,33
	Calculos		·	·
% de material fin	o que pasa el tamiz N°200: (B-C)/B*100	0,94%	0,94%	0,93%
% promedio de	material fino que pasa el tamiz N°200		0,94%	

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Cantidad de material que pasa el tamiz de 75 um por lavado

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 400.018; MTC E 202

Muestra: Agregado grueso cantera "Zurite"

CANTIDAD D	DE MATERIAL FINO QUE PASA EL TAMIZ N MTC E 202, NTP 400.0		ADO - Cante	ra "Zurite"
T.M.	3/4"			
T.M.N	1/2"			
	Descripción	Muestra 01	Muestra 02	Muestra 03
(R) Peso del reci	piente (gr)	178,05	184,23	170,12
(W) Peso de la m	nuestra seca + recipiente antes del lavado (gr)	2310,9	2412,45	2481,32
(B) Peso de la m	uestra seca antes del lavado (gr): W-R	2132,85	2228,22	2311,2
(L) Peso de la m	uestra seca + recipiente despues del lavado (gr)	2250,94	2351,42	2418,16
(C) Peso de la m	uestra seca despues del lavado (gr): <i>L-R</i>	2072,89	2165,43	2245,47
	Calculos			
% de material fin	o que pasa el tamiz N°200: (<i>B-C</i>)/ <i>B*100</i>	2,81%	2,82%	2,84%
% promedio de	material fino que pasa el tamiz N°200		2,82%	

e. Diseño de mezcla

Anexo e1: Diseño de mezcla concreto 0% agregado fino

Paso 1: Determinar el peso del agregado grueso

$$W_{AG} = 1583,33 * 0,70 = 1108,33 kg$$

Paso 2: Determinar el volumen de pasta de cemento y la relación agua-cemento (w/C)

$$\frac{w}{C} = 0.38$$

$$Vp = 0.31 \, m^3$$

Paso 3: Determinar la cantidad de cemento.

$$C = \frac{Vp}{\frac{1}{\frac{\gamma_{cemento}}{1000 \ kg/m^3}} + \frac{w}{c}} x1000 \ kg/m^3$$

$$C = \frac{\frac{0.31}{1}}{\frac{2850 \ kg/m^3}{1000 \ kg/m^3} + 0.38} x1000 \ kg/m^3$$

$$C = 424,15 \, kg$$

Paso 4: Determinar la cantidad de agua

$$w = C * \frac{w}{c}$$

$$w = 424.15 * 0.38$$

$$w = 161,18 \ kg = 161,18 \ lt$$

Paso 5: Determinar el volumen absoluto de los materiales

• Volumen absoluto del agregado grueso:

$$V_{AG} = \frac{W_{AG}}{\gamma_{AG}} = \frac{1108,33 \ kg}{2587 \ kg/m^3} = 0,43 \ m^3$$

• Volumen absoluto del cemento:

$$V_C = \frac{C}{\gamma_{cemento}} = \frac{424,15 \ kg}{2850 \ kg/m^3} = 0,15 \ m^3$$

• Volumen absoluto del agua:

$$V_{agua} = \frac{w}{\gamma_{agua}} = \frac{161,18 \, kg}{1000 \, kg/m^3} = 0,16 \, m^3$$

Paso 6: Volumen de vacíos

$$V_{vacios} = 1 m^3 - (V_{AG} + V_C + V_w) = 0.26 m^3$$

Paso 7: Ajustes por humedad del agregado

• Agregado grueso húmedo

Peso agregado grueso_{humedo} =
$$W_{AG} * (1 + \frac{Contenido de humedad del AG}{100})$$

Peso agregado grueso_{humedo} =
$$1108,33 * (1 + \frac{0,24}{100})$$

Peso agregado grueso_{humedo} = 1110,99 kg

• Humedad superficial del agregado grueso

Humedad superficial A. Grueso (%) = conten, de humedad (%)
$$-$$
 absorción(%)
Humedad superficial A. Grueso (%) = $0.24\% - 1.26\% = -1.02\%$

• Aporte al agua del agregado grueso

 $Aporte\ agua\ agregado\ grueso\ (lt) = Peso\ agregado\ grueso\ seco* Humedad\ superficial$

Aporte agua agregado grueso (lt) = 1108,33 kg *
$$\left(-\frac{1,02}{100}\right)$$
 = -11,30 kg = -11,30 lt

• Determinar el agua efectiva de la mezcla

 $Agua\ efectiva=agua\ diseño\ de\ mezcla*aporte\ de\ agua\ del\ agregado\ Grueso$

Agua efectiva (lt) =
$$161,18 lt - (-11,30 lt) = 172,48 lt$$

Paso 8: Pesos finales de los materiales necesarios para la elaboración de un concreto permeable con 0% de finos para un volumen de 1m³

• Agregado grueso: 1110,99 kg

• Cemento: 424,15 kg

• Agua: 172,48 lt

Anexo e2: Diseño de mezcla concreto 11%, 12%, 13%, 14% y 15% de agregado fino

Paso 1: Determinar el peso del agregado grueso

Peso del agregado grueso = Peso unitario compactado * factr de correcci'on

Peso del agregado grueso: $W_{AG} = 1583,33 * 0,70 = 1108,33 kg$

Peso del agregado fino = Volumen de la mezcla x Peso específico del agregado fino

Peso del agregado grueso:
$$W_{AF(11\%)} = 0.11 \text{ m}^3 * 2572 \frac{kg}{m^3} = 282.92 \text{ kg}$$

Peso del agregado grueso:
$$W_{AF(12\%)} = 0.12 \, m^3 * 2572 \frac{kg}{m^3} = 308,64 \, kg$$

Peso del agregado grueso:
$$W_{AF(13\%)} = 0.13 \text{ m}^3 * 2572 \frac{kg}{m^3} = 334,36 \text{ kg}$$

Peso del agregado grueso:
$$W_{AF(14\%)} = 0.14 \text{ m}^3 * 2572 \frac{kg}{m^3} = 360,08 \text{ kg}$$

Peso del agregado grueso:
$$W_{AF(15\%)}=0.15~m^3*2572\frac{kg}{m^3}=385.80~kg$$

Paso 2: Determinar el volumen de pasta de cemento y la relación agua-cemento (w/C)

$$\frac{w}{C} = 0.38$$

$$Vp = 0.31 \, m^3$$

Paso 3: Determinar la cantidad de cemento.

$$C = \frac{Vp}{\frac{1}{\frac{\gamma_{cemento}}{1000 \, kg/m^3}} + \frac{w}{c}} x 1000 \, kg/m^3$$

$$C = \frac{0{,}31}{\frac{2850 \ kg/m^3}{1000 \ kg/m^3} + 0{,}38} x1000 \ kg/m^3$$

$$C = 424,15 \, kg$$

Paso 4: Determinar la cantidad de agua

$$w = C * \frac{w}{c}$$

$$w = 424,15 * 0,38$$

$$w = 161,18 kg = 161,18 lt$$

Paso 5: Determinar el volumen absoluto de los materiales

• Volumen absoluto del agregado grueso:

$$V_{AG} = \frac{W_{AG}}{\gamma_{AG}} = \frac{1108,33 \ kg}{2587 \ kg/m^3} = 0,43 \ m^3$$

• Volumen absoluto del cemento:

$$V_C = \frac{W_C}{\gamma_{cemento}} = \frac{424,15 \ kg}{2850 \ kg/m^3} = 0,15 \ m^3$$

Volumen absoluto del agua:

$$V_{agua} = \frac{w}{\gamma_{agua}} = \frac{161,18 \, kg}{1000 \, kg/m^3} = 0,16 \, m^3$$

Paso 6: Volumen de vacíos

$$\begin{split} V_{vacios(11\%AF)} &= 1 \ m^3 - \left(V_{AF(11\%)} + V_{AG} + V_C + V_{agua} \right) = 0,15 \ m^3 \\ V_{vacios(12\%AF)} &= 1 \ m^3 - \left(V_{AF(12\%)} + V_{AG} + V_C + V_{agua} \right) = 0,14 \ m^3 \\ V_{vacios(13\%AF)} &= 1 \ m^3 - \left(V_{AF(13\%)} + V_{AG} + V_C + V_{agua} \right) = 0,13 \ m^3 \end{split}$$

$$V_{vacios(14\%AF)} = 1 m^3 - (V_{AF(14\%)} + V_{AG} + V_C + V_{agua}) = 0.12 m^3$$
$$V_{vacios(15\%AF)} = 1 m^3 - (V_{AF(15\%)} + V_{AG} + V_C + V_{agua}) = 0.11 m^3$$

Paso 7: Ajustes por humedad del agregado

• Agregado grueso húmedo

Peso agregado grueso
$$_{humedo}=W_{AG}*(1+\frac{Contenido de humedad del AG}{100})$$
Peso agregado grueso $_{humedo}=1108,33*(1+\frac{0,24}{100})$
Peso agregado grueso $_{humedo}=1110,99~kg$

Agregado fino húmedo

Peso agregado fino_{humedo} =
$$W_{AF(\%)}$$
 * $(1 + \frac{Contenido de humedad del A. Fino}{100})$
Peso agregado fino_{humedo(11%)} = 282,92 kg * $(1 + \frac{1,43}{100})$ = 286,96 kg
Peso agregado fino_{humedo(12%)} = 308,64 kg * $(1 + \frac{1,43}{100})$ = 313,05 kg
Peso agregado fino_{humedo(13%)} = 334,36 kg * $(1 + \frac{1,43}{100})$ = 339,14 kg
Peso agregado fino_{humedo(14%)} = 360,08 kg * $(1 + \frac{1,43}{100})$ = 365,23 kg
Peso agregado fino_{humedo(15%)} = 385,80 kg * $(1 + \frac{1,43}{100})$ = 391,32 kg

• Humedad superficial del agregado grueso

Humedad superficial A. Grueso (%) = conten, de humedad (%)
$$-$$
 absorción(%)
Humedad superficial A. Grueso (%) = $0.24\% - 1.26\% = -1.02\%$

• Humedad superficial del agregado fino

Humedad superficial A. Fino
$$(\%) = conten$$
, de humedad $(\%) - absorción(\%)$
Humedad superficial A. Fino $(11\%, 12\%, 13\%, 14\%, 15\%) = 1,43\% - 2,41\% - 0,98\%$

Aporte al agua del agregado grueso

Aporte agua agregado grueso (lt) = Peso agregado grueso seco * Humedad superficial
 Aporte agua agregado grueso (lt) =
$$1108,33 \ kg * \left(-\frac{1,02}{100}\right) = -11,30 \ kg = -11,30 \ lt$$

Aporte al agua del agregado fino

Aporte agua agregado fino (lt) = Peso agregado fino seco * Humedad superficial
Aporte agua agregado fino 11% (lt) =
$$282,92 \text{ kg} * \left(-\frac{0,98}{100}\right) = -2,77 \text{ kg} = -2,77 \text{ lt}$$

Aporte agua agregado fino 12% (lt) = $308,64 \text{ kg} * \left(-\frac{0,98}{100}\right) = -3,02 \text{ kg} = -3,02 \text{ lt}$

Aporte agua agregado fino 13% (lt) = 334,36 kg *
$$\left(-\frac{0,98}{100}\right)$$
 = -3,28 kg = -3,28 lt
Aporte agua agregado fino 14% (lt) = 360,08 kg * $\left(-\frac{0,98}{100}\right)$ = -3,53 kg = -3,53 lt
Aporte agua agregado fino 15% (lt) = 385,80 kg * $\left(-\frac{0,98}{100}\right)$ = -3,78 kg = -3,78 lt

• Determinar el agua efectiva de la mezcla

Agua efectiva = agua diseño de mezcla * aporte de agua del agregado Grueso y agregado fino Agua efectiva 11% (
$$lt$$
) = 161,18 lt – ($-11,30$ lt – 2,77 lt) = 175,25 lt Agua efectiva 12% (lt) = 161,18 lt – ($-11,30$ lt – 3,02 lt) = 175,5 lt Agua efectiva 13% (lt) = 161,18 lt – ($-11,30$ lt – 3,28 lt) = 175,76 lt Agua efectiva 14% (lt) = 161,18 lt – ($-11,30$ lt – 3,53 lt) = 176,01 lt Agua efectiva 15% (lt) = 161,18 lt – ($-11,30$ lt – 3,78 lt) = 176,26 lt

Paso 8: Pesos finales de los materiales necesarios para la elaboración de un concreto permeable con 11%, 12%, 13%, 14% y 15% de finos para un volumen de 1m³

- Agregado grueso: 1110,99 kg
- Agregado fino (11%, 12%, 13%, 14%, 15%):
 286,96 kg, 313,05 kg, 339,14 kg, 365,23 kg, 391,32 kg
- Cemento: 424,15 kg
- Agua (11%, 12%, 13%, 14%, 15%): 175,25 lt; 175,5 lt; 175,76 lt; 176,01 lt; 176,26 lt

f. Fichas de laboratorio ensayos concreto permeable

Anexo f1: Resistencia a compresión

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Ensayo resistencia a compresión

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.034, MTC E 704

Muestra: Briquetas de concreto permeable

% agre	gado fino	0%					Fecha moldeo: Fecha rotura:	19/03/2024 19/04/2024
DISEÑO	IDENTIFICADOR	DIN	1ENSIONES BRIQU	ETA	MASA (qr)	DENSIDAD	CARGA MAXIMA (Kgf)	Resistencia a compresión
DISLIVO	IDENTIFICADOR	ALTURA (cm)	DIAMETRO (cm)	area (cm²)	WASA (91)	(Kg/m^3)	CAROA WAXIWA (RGJ)	f'c (kgf/cm²)
	M-01	30,1	15,1	179,08	10500	1947,94	18250	101,9
	M-02	29,9	15	176,71	11000	2081,90	21870	123,8
0% AF	M-03	30,1	14,9	174,37	9500	1810,03	12260	70,3
U% AF	M-04	30,2	15,2	181,46	10600	1934,27	19110	105,3
	M-05	29,8	15	176,71	10600	2012,93	19360	109,6
	M-06	30	15,1	179,08	10000	1861,37	16120	90
			Pre	om edio densi	dad (kg/m³)	1941,41	Promedio f'c (kgf/cm²)	100,15

Resultados resistencia a compresión del concreto permeable

% agreg	gado fino	11%					Fecha moldeo:	12/01/2024
							Fecha rotura:	12/02/2024
DISEÑO	IDENTIFICADOR	DIM	IENSIONES BRIQU	ETA	MASA (gr)	DENSIDAD	CARGA MAXIMA (Kaf)	Resistencia a compresión
DISENU	IDENTIFICADOR	ALTURA (cm)	DIAMETRO (cm)	area (cm²)	WASA (GI)	(Kg/m^3)	CARGA WAXIWA (Kg))	f'c (kgf/cm²)
	AM-01	30,1	15,1	179,08	10000	1855,18	7930	44,3
	AM-02	30	14,7	169,72	10600	2081,86	7520	44,3
110/ 45	AM-03	30,1	15,1	179,08	10900	2022,15	21620	120,7
11% AF	AM-04	30	15,2	181,46	10100	1855,32	26160	144,2
	AM-05	30,1	15,1	179,08	10500	1947,94	19230	107,4
	AM-06	30,2	15,3	183,85	11000	1981,17	29800	162,1
			Pr	om edio densi	dad (kg/m³)	1957,27	Promedio f'c (kgf/cm²)	103,83

Resultados resistencia a compresión del concreto permeable

% agreg	gado fino	12%					Fecha moldeo:	05/01/2024
DISEÑO	IDENTIFICADOR		IENSIONES BRIQU DIAMETRO (cm)		MASA (gr)	DENSIDAD (Kg/m³)	Fecha rotura: CARGA MAXIMA (Kgf)	05/02/2024 Resistencia a compresión f'c (kgf/cm²)
	BM-01	29,9	14.7	169,72	10400	2049.41	19080	112,4
	BM-02	30,2	14,8	172,03	10300	1982,56	18250	106,1
130/ 45	BM-03	29,8	14,9	174,37	10400	2001,45	19890	114,1
12% AF	BM-04	29,9	14,9	174,37	10800	2071,48	24140	138,4
	BM-05	30,2	15	176,71	11100	2079,96	25660	145,2
	BM-06	29,9	14,9	174,37	10500	2013,94	18480	106
			Pre	om edio densi	dad (kg/m³)	2033,13	Promedio f'c (kgf/cm²)	120,37

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Ensayo resistencia a compresión

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: NTP 339.034, MTC E 704

Muestra: Briquetas de concreto permeable

Resultados resistencia a compresión del concreto permeable

% agreg	gado fino	13%					Fecha moldeo:	12/02/2024
							Fecha rotura:	13/03/2024
DICEÑO	IDENTIFICADOR	DIMENSIONES BRIQL		ETA	0.0.0.C.0. (~~)	DENSIDAD	CARGA MAXIMA (Kqf)	Resistencia a compresión
DISENO	IDENTIFICADOR	ALTURA (cm)	DIAMETRO (cm)	area (cm²)	MASA (gr)	(Kg/m³)	CARGA IVIAXIIVIA (KGJ)	f'c (kgf/cm²)
	CM-01	30,1	14,9	174,37	10600	2019,61	23040	132,1
	CM-02	30,4	15	176,71	11200	2084,89	26930	152,4
13% AF	CM-03	30,3	14,9	174,37	10600	2006,28	18670	107,1
13% AF	CM-04	30,2	15	176,71	10800	2023,74	22130	125,2
	CM-05	30,2	15	176,71	10600	1986,27	18900	107
	CM-06	30,2	15,2	181,46	10900	1989,02	21190	116,8
			Pr	omedio densi	dad (kg/m³)	2018,30	Promedio f'c (kgf/cm²)	123,43

Resultados resistencia a compresión del concreto permeable

% agre	gado fino	14%					Fecha moldeo:	08/01/2024
							Fecha rotura:	07/02/2024
DISEÑO	IDENTIFICADOR	DIM	ENSIONES BRIQU	ETA	144C4 /~~l	DENSIDAD	CARGA MAXIMA (Kgf)	Resistencia a compresión
DISENU	IDENTIFICADOR	ALTURA (cm)	DIAMETRO (cm)	area (cm²)	MASA (gr)	(Kg/m³)	CARGA IVIAXIIVIA (KGJ)	f'c (kgf/cm²)
	DM-01	29	15,2	181,46	11100	2109,33	21410	118
	DM-02	29,3	14,9	174,37	11800	2309,63	40150	230,3
14% AF	DM-03	30,1	15,2	181,46	10800	1977,32	28920	159,4
14% AF	DM-04	29,7	15	176,71	11000	2095,92	29470	166,8
	DM-05	29,4	15,1	179,08	10600	2013,31	30420	169,9
	DM-06	29,6	14,9	174,37	9800	1898,73	14940	85,7
			Pro	omedio densi	dad (kg/m³)	2067,37	Promedio f'c (kgf/cm²)	155,02

Resultados resistencia a compresión del concreto permeable

% agreg	gado fino	15%					Fecha moldeo:	15/01/2024
							Fecha rotura:	16/02/2024
DICTÑO	IDENTIFICADOR	DIM	ENSIONES BRIQU	ETA	144C4 /~~l	DENSIDAD	CARGA MAXIMA (Kgf)	Resistencia a compresión
DISENU	IDENTIFICADOR	ALTURA (cm)	DIAMETRO (cm)	area (cm²)	MASA (gr)	(Kg/m³)	CARGA IVIAXIIVIA (KGJ)	f'c (kgf/cm²)
	EM-01	29	15,1	179,08	10800	2079,59	30010	167,6
	EM-02	30	15	176,71	10900	2056,10	28650	162,1
15% AF	EM-03	30	15	176,71	11150	2103,26	42640	241,3
13% AF	EM-04	29,9	14,9	174,37	11100	2129,02	32210	184,7
	EM-05	29,8	15	176,71	10800	2050,91	33810	191,3
	EM-06	30	14,9	174,37	10900	2083,69	30130	172,8
			Pr	omedio densi	dad (kg/m³)	2083,76	Promedio f'c (kgf/cm²)	186,63

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Ensayo resistencia a flexión en viagas con carga en los tercios

centrales

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

450

AV-03

151

Norma: NTP 339.078, MTC E 709

Muestra: Vigas

		Resultado	os resistenci	a a flexión d	lel concreto per	ne able		
% agregado	fino	0%					Fecha moldeo: Fecha rotura:	19/01/2024 19/02/2024
		DIMEN	ISIONES VIGU	IETA	- CARGA	CARGA	MR	
DISEÑO	IDENTIFICADOR	Longitud tramo L (mm)	ancho b (mm)	altura h (mm)	MAXIMA (Kgf)	MAXIMA (N)	(kgf/cm²)	MR (MPa)
	BV-01	450	149	150	798,19	7830,20	10,72	1,05
12% AF	BV-02	449	151	149	643,99	6317,55	8,63	0,85
	BV-03	449	151	151	1033,56	10139,22	13,48	1,32
				Resis	tencia a flexión p	romedio	10,94	1,07
		Resultado	os resistenci	a a flexión d	lel concreto per	meable		
% agregado	fino	11%					Fecha moldeo: Fecha rotura:	18/03/2024 17/04/2024
		DIMEN	ISIONES VIGU	IETA	– CARGA	CARGA	MR	
DISEÑO	IDENTIFICADOR	Longitud	ancho b	altura h	MAXIMA (Kqf)	MAXIMA (N)	(kgf/cm²)	MR (MPa)
		tramo L (mm)	(mm)	(mm)	Wirblinin (ng))	7777	(1/9)/ 6/1/ /	
	V-01	450	150	150	692,97	6798,04	9,24	0,91
0% AF	V-02	450	149	150	815,42	7999,27	10,95	1,07
	V-03	450	151	150	1181,86	11594,04	15,66	1,54
				Resis	tencia a flexión p	romedio	11,95	1,17
		Resultado	s resistenci	a a flexión d	lel concreto per	meable		
% agregado	fino	12%					Fecha moldeo:	16/01/2024
		DIAGEA	ICIONEC VIICI	ICTA			Fecha rotura:	16/02/2024
DISEÑO	IDENTIFICADOR		ISIONES VIGU ancho b	altura h	- CARGA	CARGA	MR	MR (MPa)
DISENO	IDENTIFICADOR	Longitud tramo L (mm)	апспо в (тт)	aitura n (mm)	MAXIMA (Kgf)	MAXIMA (N)	(kgf/cm²)	win (iviru)
	AV-01	450	149	150	887,07	8702,20	11,91	1,17
11% AF	AV-02	450	150	150	1023,58	10041,35	13,65	1,34

150

991,84

Resistencia a flexión promedio

9729,92

13,14

12,90

1,29

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

Fecha moldeo: 12/01/2024

Fecha moldeo: 15/01/2024

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE

LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Ensayo resistencia a flexión en viagas con carga en los tercios

centrales

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

14%

15%

Norma: NTP 339.078, MTC E 709

Muestra: Vigas

% agregado fino

% agregado fino

		Resultado	os resistenci	a a flexión d	del concreto peri	neable		
% agregado	fino	13%					Fecha moldeo: Fecha rotura:	18/03/2024 17/04/2024
		DIMEN	ISIONES VIGU	IETA	– CARGA	CARGA	MR	
DISEÑO	IDENTIFICADOR	Longitud tramo L (mm)	ancho b (mm)	altura h (mm)	MAXIMA (Kgf)	MAXIMA (N)	(kgf/cm²)	MR (MPa)
	CV-01	450	151	149	1122,90	11015,67	15,08	1,48
13% AF	CV-02	450	150	150	2150,11	21092,61	28,68	2,81
	CV-03	450	151	150	1529,25	15001,96	20,26	1,99
	•	•	•	Resis	tencia a flexión p	romedio	21,34	2,09

Resultados resistencia a flexión del concreto permeable

							Fecha rotura:	12/02/2024
		DIMEN	ISIONES VIGU	ETA	- CARGA	CARGA	MR	
DISEÑO	IDENTIFICADOR	Longitud tramo L (mm)	ancho b (mm)	altura h (mm)	MAXIMA (Kgf)	MAXIMA (N)	(kgf/cm²)	MR (MPa)
	DV-01	450	151	150	2117,01	20767,84	28,05	2,75
14% AF	DV-02	450	150	149	2197,28	21555,31	29,70	2,91
	DV-03	450	150	149	1253,06	12292,53	16,94	1,66
				Resis	tencia a flexión p	romedio	24,90	2,44

Resultados resistencia a flexión del concreto permeable

							Fecha rotura:	14/02/2024
		DIMEN	ISIONES VIGU	ETA	– CARGA	CARGA	MR	
DISEÑO	IDENTIFICADOR	Longitud tramo L (mm)	ancho b (mm)	altura h (mm)	MAXIMA (Kgf)	MAXIMA (N)	(kgf/cm²)	MR (MPa)
	EV-01	450	150	151	2141,95	21012,53	28,19	2,76
15% AF	EV-02	450	149	152	2207,71	21657,63	28,87	2,83
	EV-03	449	151	150	2489,34	24420,45	32,91	3,23
				Resis	tencia a flexión p	romedio	29,99	2,94

Anexo f3: Perdida al desgaste o Cántabro

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Pérdida al desgaste o cantabro

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: MTC

Muestra: Muestras de concreto hidraulico permeable

ENSAYO DE PERDIDA AL DESGASTE O CANTABRO

Diseño	11%					
	Descripción		Muestra 1	Muestro 2	Muestra 3	Muestra4
(A) Peso inicial d	de la muestra (gr)		752,24	735,12	779,15	706,74
(B) Peso despue	s del ensayo (gr)		494,95	136,94	167,84	105,38
(C) Porcentaje de	e desgaste %	(A-B)/A*100	34,20	81,37	78,45	85,09
Promedio Peso e	especifico de masa			65	9,78	

ENSAYO DE PERDIDA AL DESGASTE O CANTABRO

Diseño 12%					
Descripción		Muestra 1	Muestra 2	Muestra 3	Muestra4
(A) Peso inicial de la muestra (gr)		769,37	751,27	732,07	763,93
(B) Peso despues del ensayo (gr)		361,21	90,00	138,82	591,47
(C) Porcentaje de desgaste %	(A-B)/A*100	53,05	88,02	81,04	22,58
Promedio Peso específico de masa			6.	1,17	

ENSAYO DE PERDIDA AL DESGASTE O CANTABRO

	E NSAYO	DE PERDIDA AL D	E SGASTE O	CANTABRO		
Diseño	13%					
	Descripción		Muestra 1	Muestra 2	Muestra 3	Muestra4
(A) Peso inicial de la m	uestra (gr)		732,04	758,55	747,49	785,21
(B) Peso despues del e	ensayo (gr)		168,37	171,78	358,35	555,06
(C) Porcentaje de desg	aste %	(A-B)/A*100	77,00	77,35	52,06	29,31
Promedio Peso especi	fico de masa	_		58	3,93	
	E NSAYO	DE PERDIDA AL D	E SGASTE O	CANTABRO		
Diseño	14%					
	Descripción		Muestra 1	Muestra 2	Muestra 3	Muestra4
(A) Peso inicial de la m	uestra (gr)		772,71	755,18	661,68	746,88
(B) Peso despues del e	ensayo (gr)		475,67	308,06	158,19	383,24
(C) Porcentaje de desg	aste %	(A-B)/A*100	38,44	59,21	76,09	48,69
Promedio Peso especi	fico de masa			55	,61	
	E NSAYO	DE PERDIDA AL D	E SGASTE O	CANTABRO		
Diseño	15%					
	Descripción		Muestra 1	Muestra 2	Muestra 3	Muestra4
(A) Peso inicial de la m	uestra (gr)		708,32	718,50	681,33	767,55
(B) Peso despues del e	nsayo (gr)		582,03	573,64	106,87	670,64
(C) Porcentaje de desg	aste %	(A-B)/A*100	17,83	20,16	84,31	12,63
Promedio Peso especi	fico de masa			33	3,73	

Anexo f4: Permeabilidad

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Permeabilidad

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: ACI 522- R10

Muestra: Muestras de concreto hidraulico permeable

ENSAYO DE PERMEABILIDAD Desa ipción Diseño 0 Diseño A (11%) Diseño B (12%) Diseño C (13%) Diseño D (14%) Diseño E (15%) 10,00 10,00 10,00 10,00 (A) Diametro de la muestra (cn.) 10,00 10,00 20.00 20.00 20.00 20.00 20.00 (B) Longi tud de la muestra (cm) 20,00 (C) Tiempo de paso (s) 12,00 13,00 14.00 15,70 20,00 29,20 (D) Area del tuba (cm^2) 78,54 78,54 78,54 78,54 78,54 78,54 A^2*P1/4 78.54 (E) Área de la muestra (cm ^2) 78.54 78.54 78.54 78.54 78.54 (F) Nivel de agua h2 (cm) 10,00 10,00 10,00 10,00 10,00 10,00 19,00 (G) Nivel de agua h1 (cm) 19,00 19,00 19,00 19,00 19,00 Permeabilidad (K) (cm/s) (E/G)*(II/C)*In(G/F) 1,07 0,99 0,92 0,82 0,64 0.44

Anexo f5: Infiltración

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA CIVIL

Tesis: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRAULICO

PERMEABLE PARA PAVIMENTOS RIGIDOS URBANOS DE LA REGION CUSCO USANDO LA NORMA ACI 522"

Laboratorio: Infiltración

Tesistas: Rudyard Nicolay Araujo Mamani

Jhersson Valentin Sullca Baca

Norma: ACI 522- R10

Muestra: Losas de concreto hidraulico permeable

ENSAYO DE INFILTRACIÓN							
Descripció	in	Diseño 0	Diseño A (11%)	Diseño B (12%)	Diseño C (13%)	Diseño D (14%)	Diseño E (15%)
(A) Diametrode) aniilo mm		301,00	301,00	301,00	301,00	301,00	301,00
(B) Factor K		45.8366.6000,00	458,3666,000,00	4583 666 000,00	45.8366.6000,00	4583666000,00	4583666000,00
(C) Pre Humectación (It)		3,60	3,60	3,60	3,60	3,60	3,60
(D) Tiempa pre humectación (s)		23,00	23,60	35,40	40,80	42,50	35,20
(E) Volumen de ensayo (Lt)		18,00	18,00	18,00	18,00	18,00	18,00
(F) Tiempo Ensayo		15,00	30,70	34,60	38,60	46,50	59,20
(G) Infitración (mm/h)	D*E/(A^2*F)	60710,14	29662,93	26319,42	23592,02	19583,92	153.82,64
Infiltración (mm/s)	G/3600	16,86	8.24	7,31	6,55	5,44	4,27

g. Certificaciones y/o fichas técnicas

Anexo g1: Durabilidad al sulfato de magnesio

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE CIENCIAS

Av. de la Cultura 733 - Pabellón "C" Of. 106 1er. piso - Telefax: 224831 - Apartado Postal 921 - Cusco Perú

UNIDAD DE PRESTACIÓN DE SERVICIOS DE ANÁLISIS QUÍMICO DEPARTAMENTO ACADÉMICO DE QUÍMICA

INFORME DE ANÁLISIS

Nº0431-23-LAQ

SOLICITANTE : JHERSSON VALENTIN SULLCA BACA

RUDYARD NICOLAY ARAUJO MAMANI

MUESTRA

: AGREGADOS 6 MUESTRAS

ENSAYO

: DURABILIDAD AL SULFATO DE MAGNESIO

FECHA A.

: C/19/09/2023

RESULTADO ANALISIS:

CANTERAS	Peso Inicial g.	Peso Final g.	% Pérdida
Machupicchu	220,4	179,85	18,37
Zurite	196,8	130,67	33,60
Huillque	260,3	178,82	31,30
Quiquijana	206,8	140,67	31,70
Pisac	190,1	143,52	24,50
Vicho	180,3	129,45	28,20

Cusco, 18 Octubre 2023

CERTIFICADO DE CALIBRACIÓN MT - LFP - 062 - 2023

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

		rugina 1 de
1. Orden de trabajo	OT 0078-23	Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales
2. Solicitante	UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO	que realizan las unidades de la medición de acuerdo con el Sistema
3. Dirección	Av. De la Cultura Nro. 733, Cusco - Cusco - CUSCO	Internacional de Unidades (SI).
		Los resultados son validos en e momento de la calibración. A
4. Equipo	PRENSA DE CONCRETO	solicitante le corresponde disponer er su momento la ejecución de una
Capacidad	100000 kgf	recalibración, la cual está en función del uso, conservación
Marca	ELE INTERNATIONAL	mantenimiento del instrumento de medición o a reglamento vigente.
Modelo	36-3088/06	METROLOGÍA & TÉCNICAS S.A.C
Número de Serie	9010000012	no se responsabiliza de los perjuicios que pueda ocasionar el uso
Procedencia	U.S.A.	inadecuado de este instrumento, ni de una incorrecta interpretación de los
Identificación	NO INDICA	resultados de la calibración aqu declarados.
Indicación	DIGITAL	Este certificado de calibración no
Marca	ELE INTERNATIOMAL	podrá ser reproducido parcialmente
Modelo	NO INDICA	sin la aprobación por escrito de
Número de Serie	1886-1-3514	laboratorio que lo emite.
Resolución	10 kgf	El certificado de calibración sin firma sello carece de validez.
5. Fecha de Calibración	2023-03-22	
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello
2023-03-28	Firmado digit Williams Pére Fecha: 2023.0	To the second

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

ventas@metrologiatecnicas.com metrologia@metrologiatecnicas.com www.metrologiatecnicas.com

-05'00'

CERTIFICADO DE CALIBRACIÓN MT - LFP - 062 - 2023

Área de Metrología

Laboratorio de Fuerza

Dágina 2 da

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1:2018 "Materiales metálicos. Calibración y verificación de máquinas de ensayos uniaxiales estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Calibración y verificación del sistema de medida de fuerza". (ISO 7500-1:2018).

7. Lugar de calibración

Las instalaciones del cliente.

Av. De la Cultura Nro. 733, Cusco - Cusco - CUSCO

8. Condiciones Ambientales

	Inicial	Final
Temperatura	19,2 °C	21,1 °C
Humedad Relativa	60 % HR	42 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en HOTTINGER BALDWIN MESSTECHNIK GmbH - Alemania 2020-1 87747 / 2021-1 95857	CELDA DE CARGA calibrado a 1 000 kN con incertidumbre del orden de 0,24 %	LEDI-PUCP INF-LE 037-22B

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 1,0 según la norma UNE-EN ISO 7500-1.
- Se realizó la calibración hasta el 90 % de su capacidad por motivos de seguridad.

CERTIFICADO DE CALIBRACIÓN MT - LFP - 062 - 2023

Área de Metrología

Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

	icación Equipo	Indicación de Fuerza (Ascenso) Patrón de Referencia			
%	$F_i(kgf)$	F_1 (kgf)	F ₂ (kgf)	F_3 (kgf)	F _{Promedio} (kgf
10	10000,0	10092,7	10082,7	10102,7	10092,7
20	20000,0	20168,6	20128,4	20158,6	20151,9
30	30000,0	30116,8	30126,9	30156,9	30133,5
40	40000,0	40110,0	40140,3	40160,5	40136,9
50	50000,0	50172,6	50232,7	50242,7	50216,0
60	60000,0	60176,7	60226,9	60297,1	60233,5
70	70000,0	70239,7	70109,3	70219,7	70189,6
80	0,00008	80142,6	80122,6	80252,5	80172,6
90	90000,0	90058,2	90138,0	90217,8	90138,0
Retor	no a Cero	0,0	0,0	0,0	

Indicación	Errores Encontrados en el Sistema de Medición			Incertidumbre	
del Equipo F (kgf)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa a (%)	U (k=2) (%)
10000,0	-0,9	0,2		0,10	0,4
20000,0	-0,8	0,2	7	0,05	0,4
30000,0	-0,4	0,1		0,03	0,4
40000,0	-0,3	0,1		0,03	0,4
50000,0	-0,4	0,1		0,02	0,4
60000,0	-0,4	0,2		0,02	0,4
70000,0	-0,3	0,2	——— <u>——</u> ———————————————————————————————	0,01	0,4
80000,0	-0,2	0,2	7-7-7	0,01	0,4
90000,0	-0,2	0,2		0,01	0,4

MÁXIMO ERROR RELATIVO DE CERO (f ₀)	0,00 %
--	--------

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017

Certificado de Calibración TC - 17188 - 2023

Proforma · 22876A Fecha de emisión: 2023-08-31 Página · 1 de 2

Solicitante : UNIVERSIDAD NACIONAL SAN ANTONIO ABAD DEL CUSCO

: Av. De La Cultura 773 Cusco - Cusco Dirección

Intrumento de medición : MÁQUINA DE ENSAYO UNIVERSAL

INSTRON Marca Modelo : 600DX-B1-C3A-G1F N° de Serie : 600DXR4565 Alcance de indicación : 61182 kgf Resolución : 1 kgf

Procedencia : U.S.A. Identificación : No Indica

Ubicación : Laboratorio de Mecanica de Suelos v Materiales

Fecha de Calibración : 2023-08-28

Instalaciones de UNIVERSIDAD NACIONAL SAN ANTONIO ABAD DEL CUSCO

Método de calibración

La calibración se efectuó por comparación directa tomando como referencia la norma UNE-EN ISO 376. Calibración de los instrumentos de medida de fuerza utilizados para la verificación de las máquinas de ensayo uniaxial.

Condiciones de calibración

Magnitud	Inicial	Final
Temperatura	20,4 °C	20,1 °C
Humedad Relativa	34,6 %HR	35,7 %HR

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados una certificación de conformidad con normas producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017

Certificado : TC - 17188 - 2023

Página : 2 de 2

Trazabilidad

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración	
Patrones de Referencia de AEP TRANSDUCERS	Celda de carga de capacidad 3 MN Modelo CLFlex Indicador digital modelo MP6plus	LAT 093 9623F	
Patrón de Referencia del DM-INACAL	Manómetro Digital 0 bar a 700 bar Clase de Exactitud 0,05	LFP-C-049-2023 Abril 2023	

Resultados de calibración

RESULTADOS							
INDICACIÓN DEL EQUIPO BAJO CALIBRACIÓN	INDICACIÓN DEL PATRÓN	ERROR	INCERTIDUMBRE				
kgf	kgf	kgf	kgf				
2 185	2 215,0	-30,0	0,6				
5 090	5 127,5	-37,5	0,7				
10 002	10 040,2	-38,2	0,7				
15 042	15 081,7	-39,7	0,7				
20 150	20 193,1	-43,1	0,7				
25 169	25 212,5	-43,5	0,8				
30 135	30 181,8	-46,8	0,8				
35 060	35 108,5	-48,5	0,9				
40 081	40 130,9	-49,9	0,9				

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

Incertidumbre expandida U

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

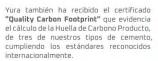
DESCRIPCIÓN

El cemento Multi-propósito de Alta durabilidad Yura IP es un cemento elaborado bajo los más estrictos estándares de la industria cementera, colaborando con el medio ambiente, debido a que en su producción se reduce ostensiblemente la emisión de CCP, contribuyendo a la reducción de los gases con efecto invernadero.

Es un producto fabricado con Clinker Tipo I de alta calidad y adición de puzolana natural de origen volcánico y yeso. Esta mezcla es molida industrialmente en molinos de última generación, logrando un alto grado de finura. La fabricación es controlada bajo un sistema de gestión de calidad certificado ISO 9001, de gestión ambiental ISO 14001 y de gestión de la seguridad y salud en el trabajo ISO 45001, asegurando un alto estándar de calidad.

Sus componentes y la tecnología utilizada en su fabricación, hacen que el CEMENTO MULTI-PROPÓSITO YURA TIPO IP, tenga propiedades especiales que otorgan a los concretos y morteros cualidades únicas de ALTA DURABILIDAD, permitiendo que el concreto mejore su resistencia e impermeabilidad y también pueda resistir la acción del intemperismo, ataques químicos (aguas saladas, sulfatadas, ácidas, desechos industriales, reacciones químicas en los agregados, etc.), abrasión, u otros tipos de deterioro.

Puede ser utilizado en cualquier tipo de obras de infraestructura y construcción en general. Especialmente para OBRAS DE ALTA EXIGENCIA DE DURABILIDAD.


DURABILIDAD

"Es aquella propiedad del concreto endurecido que define la capacidad de éste para resistir la acción agresiva del medio ambiente que lo rodea, permitiendo alargar su vida útil".

SOSTENIBILIDAD

Somos la primera cementera en conseguir 2 estrellas en la **certificación de Huella de Carbono** otorgada por el Ministerio del Ambiente.

DESCRIPCIÓN

PURA IP es un cemento elaborado bajo los más estrictos estándares de la industria cementera, colaborando con el medio ambiente, debido a que en su producción se reduce ostensiblemente la emisión de CO₂, contribuyendo a la reducción de los gases con efecto invernadero.

Es un producto fabricado a base de Clinker de alta calidad, puzolana natural de origen volcánico de alta reactividad y yeso. Esta mezcla es molida industrialmente en molinos de última generación, logrando un alto grado de finura. La fabricación es controlada bajo un sistema de gestión de calidad certificado con ISO 9001 y de gestión ambiental ISO 14001, asegurando un alto estándar de calidad. Sus componentes y la tecnología utilizada en su fabricación, hacen que el CEMENTO MULTI-PROPÓSITO YURA TIPO IP, tenga propiedades especiales que otorgan a los concretos y morteros cualidades únicas de ALTA DURABILIDAD, permitiendo que el concreto mejore su resistencia e impermeabilidad y también pueda resistir la acción del intemperismo, ataques químicos (aguas saladas, sulfatadas, ácidas, desechos industriales, reacciones químicas en los agregados, etc.), abrasión, u otros tipos de deterioro.

Puede ser utilizado en cualquier tipo de obras de Infraestructura y construcción en general. Especialmente para OBRAS DE ALTA EXIGENCIA DE DURABILIDAD.

DURABILIDAD

"Es aquella propiedad del concreto endurecido que define la capacidad de éste para resistir la acción agresiva del medio ambiente que lo rodea, permitiendo alargar su vida útil".

REQUISITOS REQUISITOS QUÍMICOS	CEMENTO MULTI-PROPÓSITO YURA TIPO IP		REQUESTOS NORMA NTP 334,090 ASTM C-595		1 1	
MgO (%)			6,00 K	Λáx.	1 1 214	
SO ₂ (%)	1.5	3.0	4,00 N	Λáx.	-	-
Pérdida por Ignición (%)	1.5 a 4.0		5.00 Máx.		230	
REQUISITOS FÍSICOS					27.46	P- 1
Peso específico (gr/cm3)	2.75	2.85	2			Will.
Expansión en autoclave (%)	0.07 a	0.03	-0,20 a	0.80	The same	100
Fraguado Vicat inicial (minutos)	170 a	270	45 a 4	420	DESCRIPTION OF SUPE	MAR AIRE SCANAR
Contenido de aire	2.5	8.0	12 Máx		REQUISITIOS NORMA NTP 334.009 ASTM C-150 (CLMENTO TIPO I)	
finisher alpromption	Kgf/cm2	MPa	Kgf/cm2	MPa	and the second	100
3 dias	175 at 200	17.1 a 19.6	133 Min	13	122 Min	12Min
7 dias	225 a 255	22 a 25	204 Min	20	194 Min	19 Min
28 dias	306 a 340	30 a 33.3	255 Min	25	1.7	-
Prostetion a los pullatos			94			7
% Expansión a los 6 meses	< ()	.04	0.05 N	Máx .	16.	
% Expansión a 1 año	< 0	05	0.10 8	Also	6 - 14	

CON **CEMENTO TIPO I**

El cemento Tipo I produce un 75% de silicatos de calcio hidratados que generan resistencia a la compresión, el otro 25% es hidróxido de calcio que no ofrece resistencia y es susceptible a los ataques químicos, produciendo erosiones y/o expansiones.

Silicatos de Calcio Hidróxido de Hidratados Calcio

CON CEMENTO MULTI-PROPÓSITO **DE ALTA DURABILIDAD YURA IP**

Hidróxido de calcio reacciona con la puzolana

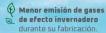
Silicatos de Puzolana Calcio Hidratados

Reacción puzolánica produce más Silicatos de Calcio Hidratados

Silicatos de Calcio

RESISTENCIA AL ATAQUE DE SULFATOS Y CLORUROS

El hidróxido de calcio, liberado en la hidratación del cemento, reacciona con los sulfatos produciendo sulfato de calcio que genera una expansión del 18% y produce también etringita que es el compuesto causante de la fisuración del concreto.


Debido a la capacidad de la puzolana de Yura para fijar este hidróxido de calcio liberado y a su mayor impermeabilidad, el CEMENTO MULTI-PROPÓSITO YURA IP es resistente a los sulfatos, cloruros y al ataque químico de otros iones agresivos.

MAYOR **IMPERMEABILIDAD**

EL CEMENTO MULTI-PROPÓSITO YURA IP, produce mayor cantidad de silicatos cálcicos, debido a la reacción de los silicatos de la puzolana con los hidróxido de calcio producidos en la hidratación del cemento disminuyendo la porosidad, así el concreto se hace más impermeable y protege a la estructura metálica de la corrosión.

La puzolana que contiene el cemento MULTI-PROPÓSITO YURA IP, reacciona con el hidróxido de calcio, produciendo más Silicatos de Calcio Hidratados, lo que otorga mayor resistencia, sellando los poros logrando un concreto más resistente e impermeable.

CONTRARRESTA LA REACCIÓN NOCIVA ÁLCALI - AGREGADO

CEMENTO MULTI-PROPÓSITO

MENOR CALOR DE HIDRATACIÓN

La reacción química de hidratación del cemento genera calor, calentando la mezcla de concreto, lo que la expande y cuando esta reacción termina, se enfría y contrae, generando fisuras y grietas. El cemento multi-propósito YURA Tipo IP, debido al contenido de puzolana reduce el calor generado en la reacción, disminuyendo la expansión térmica, evitando la presentación de fisuras en el concreto e impidiendo el ingreso de agentes externos dañinos.

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES

Av. de la cultura Nro. 733 - Escuela Profesional de Ingeniería Civil

CERTIFICADO DE USO DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES PARA TESIS DE INVESTIGACIÓN

EL QUE SUSCRIBE JEFE DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES DE LA FACULTAD DE INGENIERIA CIVIL

HACE CONSTAR:

Que los tesistas; conducentes a la obtención del título profesional de Ingeniero Civil; Bach. RUDYARD NICOLAY ARAUJO MAMANI y Bach. JHERSSON VALENTIN SULLCA BACA, hizo uso del laboratorio para ejecución de la tesis de investigación: "ESTUDIO DE MEZCLAS DE CONCRETO HIDRÁULICO PERMEABLE PARA PAVIMENTOS RÍGIDOS URBANOS DE LA REGIÓN CUSCO USANDO LA NORMA ACI 522".

Los ensayos que realizaron son los siguientes:

Nro	ENSAYO	NORMA	CANT
01	Contenido de humedad total evaporable de agregados por secado	NTP 339.185	07
02	Análisis granulométrico del agregado fino, grueso y global	NTP 400.012	07
03	Determinación de materiales más finos que pasan por el tamiz de 75μm(N°200) por lavado en agregados	NTP 400.018	07
04	Peso específico y absorción del agregado grueso	NTP 400.021	05
05	Peso específico y absorción del agregado fino	NTP 400.022	02
06	Determinación de la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados	NTP 400.017	07
07	Determinación de la resistencia a la degradación en agregados gruesos de tamaños menores por Abrasión e Impacto en la Máquina de Los Ángeles		
08	Determinación de la resistencia a la compresión del concreto en muestras cilíndricas	NTP 339.034	06
09	Determinar la resistencia a la flexión del hormigón en vigas simplemente apoyadas con cargas a los tercios del tramo	NTP 339.078	06
10	Medición de asentamiento del concreto de cemento portland	NTP 339.035	06
11	Ensayo cántabro de perdida por desgaste	MTC E 515	06
12	Ensayo de Permeabilidad	ACI 522 R-10	06
13	Prueba estándar para la tasa de infiltración de concreto permeable in-situ	ASTM C 1701	06

Se le expide la presente constancia a solicitud escrita por los interesados; con fines académicos para la tesis de investigación.

Cusco, 10 de setiembre del 2024

h. Matriz de consistencia

Problemas	Objetivos	Hipótesis	Variables	Dimensión	Indicadores	Intrumentos	Metodología
PG: ¿El desarrollo de mezclas de concreto hidráulico permeable incorporando porcentajes fijos de agregado fino podrá ser utilizado para el	porcentaje fijo de	HG:La mezcla de concreto hidráulico permeable con el 15% de agregado fino fijo es aplicable en el diseño de pavimentos rígidos	Variable independiente: porcentaje de agregado fino.	Contenido de agregado fino en la mezcla	Porcentaje en peso del agregado fino respecto a la mezcla total	Balanza, Formato de recoleccion de datos, Diseño de mezcla del concreto hidraúlico permeable	Método: Deductivo Orientación: Aplicada Enfoque: Cuantitativo
diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el	diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el	urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10.			Ensayo para el Análisis granulométrico de los agregados	Balanza, tamices, formato de recolección de datos	Instrumentos de recolección de datos: Retrolectiva
reporte ACI 522R-10?	reporte ACI 522R-10.		Variable Dependiente: Mezcla de concreto hidráulico	Propiedades físico mecánicas del	Ensayo para la determinación de la gravedad específica y absorción del agregado fino	Balanza, estufa, frasco volumétrico de 500 cm³, molde cónico metálico, varilla pequeña para apisonado y formato de recolección de datos	Tipo y nivel: Descriptiva
			permeable	agregado fino	Método de ensayo normalizado para contenido de humedad	Balanza, estufa y formato de recolección de datos	Diseño: Experimental
					Ensayo para la determinación del peso unitario del agregado	Balanza, recipiente de medida metálico, varilla compactadora de acero, pala de mano, formato de recolección de datos	

Problemas	Objetivos	Hipótesis	Variables	Dimensión	Indicadores	Intrumentos	
PE1: ¿Cuáles son los agregados que tienen las	OE1: Identificar los agregados que tienen las	H1: ¿Serán los agregados provenientes de las	Variable		Distancia a la cantera	GPS	
propiedades adecuadas para la mezcla de	propiedades adecuadas para la mezcla de	canteras de Pisac y Cunyac, comparados con	independiente 1: Origen de los	Eleccción de Canteras	Accesibilidad	GPS	
concreto hidráulico permeable que puedan	concreto hidráulico permeable a ser utilizados	los agregados	agregados		Propiedades de los agregados	Ensayos	
aplicarse en pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10?	en el diseño de pavimentos rígidos urbanos de bajo volumen de tránsito en la región Cusco, usando el reporte ACI 522R-10	s provenientes de las canteras de Quiquijana, Huillque, Vicho, Zurite, Machupicchu, los que tengan propiedades adecuadas para el diseño de pavimentos rígidos urbanos de bajo volumen de transito en la región Cusco, usando el reporte ACI 522R-10?	Variable	Las propiedades	Ensayo para el Análisis granulométrico de los Ensayo para la determinación del peso específico y absorción del agregado Método de ensayo normalizado para contenido de humedad	Balanza, tamices, formato de recolección de datos Balanza, estufa, cesta de malla de alambre, depósito de agua, tamices y formato de recolección de datos Balanza, estufa y formato de recolección de datos	
		dependiente 1: propiedades de los agregados agregados rifísico- mecánicas de los agregados		dependiente 1: propiedades de los agregados me	iedades de los agregados físico-mecánicas de	Ensayo para la determinación del peso unitario del agregado grueso	Balanza, recipiente de medida metálico, varilla compactadora de acero, pala de mano, formato de recolección de datos
					Ensayo normalizado para la resistencia a la degradación de los agregados gruesos por abrasión e impacto	Máquina de Los Ángeles, tamices, balanza, carga, estufa, formato de recolección de datos	
					Durabilidad al sulfato de magnesio	Laboratorio y formato de recolección de datos	

Problemas	Objetivos	Hipótesis	Variables	Dimensión	Indicadores	Intrumentos	
PE2: ¿Cuál es el diseño de mezcla adecuado de concreto hidráulico permeable, incorporando un porcentaje fijo entre el 11% y 15% de agregado ino, que ofrezca una esistencia a compresión PE2: Realizar el diseño adecuado de la mezcla de concreto hidráulico permeable, incorporando un porcentaje fijo entre el 11% y 15% de agregado fino, que tenga una resistencia a compresión	H2: El diseño más adecuado de la mezcla de concreto hidráulico permeable, incorporando	Variable independiente 2: El diseño de mezclas del concreto hidráulico permeable con porcentaje fijo de agregado fino.	hidráulico	Porcentaje óptimo en peso de agregado fino	Balanza		
y flexión aplicable al diseño pavimentos rígidos urbanos de bajo volumen de tránsito de la región	y flexión aplicable al diseño de pavimentos rígidos urbanos de bajo volumen de tránsito de la	de pavimentos rígidos urbanos de bajo volumen de tránsito de la región	Variable dependiente 2:	Las	Resistencia a compresion del concreto	Máquina de compresión y formato de recolección de datos	
Cusco, usando el reporte ACI 522R-10?	región Cusco, usando el Cusco, usando el reporte reporte ACI 522R-10. ACI 522R-10.	region cuses, usuado en cuses, usuado en reporte	•	•		Resistencia a flexión del concreto	Máquina universal y formato de recolección de datos
			permeable.	permeable	Resistencia a la abrasión (ensayo de cántabro)	Máquina Los Ángeles, balanza y formato de recolección de datos	

Problemas	Objetivos	Hipótesis	Variables	Dimensión	Indicadores	Intrumentos
PE3: ¿Cuál es el diseño	OE:3: Realizar el diseño	H3: El diseño más	Variable	Diseño de	Porcentaje óptimo en	Balanza
de mezcla adecuado de	adecuado de la mezcla de	adecuado de la mezcla de	independiente 3:	mezclas de	peso de agregado fino	
concreto hidráulico	concreto hidráulico	concreto hidráulico	El diseño de	concreto		
permeable, incorporando	permeable, incorporando	permeable, incorporando	mezclas del	hidráulico		
in porcentaje fijo entre el	un porcentaje fijo entre el	un porcentaje fijo de	concreto hidráulico	permeable		
1% y 15% de agregado	11% y 15% de agregado	agregado fino del 15%,	permeable con	1		
ino, que ofrezca un	fino, que ofrezca un	ofrece un coeficiente de	porcentaje fijo de			
oeficiente de	coeficiente de	permeabilidad e	agregado fino.			
ermeabilidad e	permeabilidad e	infiltración aplicable al				Anillo de infiltración,
nfiltración aplicable al	infiltración aplicable al	diseño de pavimentos				macilla de fontanero,
iseño pavimentos rígidos	diseño de pavimentos	rígidos urbanos de bajo	Variable	Las	Infiltración	balanza, cronómetro y
ırbanos de bajo volumen	rígidos urbanos de bajo	volumen de tránsito de la	Dependiente 3:	propiedades		formato de recolección
le tránsito en la región	volumen de tránsito en la	región Cusco, usando el	Coeficiente de	hidráulicas del		de datos
lel Cusco, usando el	región cusco, usando el	reporte ACI 522R-10.	permeabilidad e	concreto		40 44005
reporte ACI 522R-10?	reporte ACI 522R-10.		infiltración del concreto hidráulico permeable	hidráulico	Permeabilidad	Permeámetro, cronómetro y formato o reloclección de datos